Adsorption-controlled molecular-beam epitaxial growth of BiFeO3

BiFeO3 thin films have been deposited on (111) SrTiO3 single crystal substrates by reactive molecular-beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth overpressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry. Four-circle x-ray diffraction reveals phase-pure, untwinned, epitaxial, (0001)-oriented films with rocking curve full width at half maximum values as narrow as 25arcsec (0.007°). Second harmonic generation polar plots combined with diffraction establish the crystallographic point group of these untwinned epitaxial films to be 3m at room temperature.

[1]  Y. J. Lee,et al.  Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications , 2005 .

[2]  M. Bibes,et al.  Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films , 2005, cond-mat/0504631.

[3]  R. Holman Determination of phase equilibria in complex oxide systems by mass-loss knudsen effusion , 1976 .

[4]  Ramamoorthy Ramesh,et al.  Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering , 2006 .

[5]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[6]  Junling Wang,et al.  Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films , 2005, cond-mat/0501675.

[7]  K. Saito,et al.  Structural Characterization of BiFeO3 Thin Films by Reciprocal Space Mapping , 2006 .

[8]  S. Migita,et al.  Epitaxial Bi4Ti3O12 thin film growth using Bi self-limiting function , 1999 .

[9]  G. Kuzmenko,et al.  Thermodynamic calculation of the equilibrium solidus of binary A3B5 semiconductors. The case of GaP and GaAs , 1984 .

[10]  R. Ramesh,et al.  Epitaxial integration of (0001) BiFeO3 with (0001) GaN , 2007 .

[11]  X. Pan,et al.  Adsorption-controlled growth of Bi4Ti3O12Bi4Ti3O12 by reactive MBE , 1998 .

[12]  L. E. Cross,et al.  Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization , 2005 .

[13]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[14]  Nicola A. Spaldin,et al.  Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite , 2005 .

[15]  Mark D. Losego,et al.  MgO epitaxy on GaN (0002) surfaces by molecular beam epitaxy , 2006 .

[16]  Junling Wang,et al.  Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions , 2004 .

[17]  R. Katiyar,et al.  rf oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001) , 2007 .

[18]  M. Blamire,et al.  High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films , 2005 .

[19]  D. Schlom,et al.  Epitaxial lead titanate grown by MBE , 1997 .

[20]  Darrell G. Schlom,et al.  Oxide nano-engineering using MBE , 2001 .

[21]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[22]  D. Schlom,et al.  Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy , 1998 .

[23]  Wolfgang Kleemann,et al.  Large bulk polarization and regular domain structure in ceramic BiFeO3 , 2007 .

[24]  S. Shirasaki Defect lead titanates with diverse curie temperatures , 1971 .

[25]  J. Harris,et al.  Infra-red transmission spectroscopy of GaAs during molecular beam epitaxy , 1987 .