Discovery and confirmation of the shortest gamma-ray burst from a collapsar

[1]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[2]  M. J. Williams,et al.  GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run , 2021, Physical Review D.

[3]  A. Castro-Tirado,et al.  A peculiarly short-duration gamma-ray burst from massive star core collapse , 2021, Nature Astronomy.

[4]  K. Hurley,et al.  The Konus–Wind Catalog of Gamma-Ray Bursts with Known Redshifts. II. Waiting-Mode Bursts Simultaneously Detected by Swift/BAT , 2020, Astrophysical Journal.

[5]  A. R. Rao,et al.  The search for fast transients with CZTI , 2020, Journal of Astrophysics and Astronomy.

[6]  M. J. Williams,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[7]  Chris L. Fryer,et al.  A tale of two mergers: constraints on kilonova detection in two short GRBs at z$\sim$0.5 , 2020, 2012.00026.

[8]  S. Reusch,et al.  robertdstein/ampel_followup_pipeline: V1.1 Release , 2020 .

[9]  M. Graham,et al.  Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j , 2020, Nature Astronomy.

[10]  P. Chandra,et al.  GRB 200826A: uGMRT radio upper limit at 1.25 GHz , 2020 .

[11]  A. Fruchter,et al.  GRB 160625B: Evidence for a Gaussian-shaped Jet , 2020, The Astrophysical Journal.

[12]  A. Palmese,et al.  The Distant, Galaxy Cluster Environment of the Short GRB 161104A at z ∼ 0.8 and a Comparison to the Short GRB Host Population , 2020, The Astrophysical Journal.

[13]  A. Levan,et al.  Discovery of the Optical Afterglow and Host Galaxy of Short GRB 181123B at z = 1.754: Implications for Delay Time Distributions , 2020, The Astrophysical Journal.

[14]  J. Neill,et al.  ZTF20aajnksq (AT 2020blt): A Fast Optical Transient at z ≈ 2.9 with No Detected Gamma-Ray Burst Counterpart , 2020, The Astrophysical Journal.

[15]  A. Mahabal,et al.  A high-energy neutrino coincident with a tidal disruption event , 2020 .

[16]  Adam A. Miller,et al.  The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses , 2020, The Astrophysical Journal.

[17]  L. Singer,et al.  Dynamic scheduling: target of opportunity observations of gravitational wave events , 2020, 2003.09718.

[18]  P. N. Bhat,et al.  The Fourth Fermi-GBM Gamma-Ray Burst Catalog: A Decade of Data , 2020, The Astrophysical Journal.

[19]  M. Coughlin,et al.  New Constraints on the Supranuclear Equation of State and the Hubble Constant from Nuclear Physics -- Multi-Messenger Astronomy , 2020, 2002.11355.

[20]  F. Team GRB 200221A: Fermi GBM Final Real-time Localization , 2020 .

[21]  A. Lien,et al.  Short gamma-ray bursts within 200 Mpc , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  D. A. García-Hernández,et al.  The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra , 2019, The Astrophysical Journal Supplement Series.

[23]  A. Mahabal,et al.  Palomar Gattini-IR: Survey Overview, Data Processing System, On-sky Performance and First Results , 2019, Publications of the Astronomical Society of the Pacific.

[24]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[25]  E. Troja,et al.  Gamma-Ray Burst Afterglows in the Multimessenger Era: Numerical Models and Closure Relations , 2019, The Astrophysical Journal.

[26]  D. Kocevski,et al.  Evaluation of Automated Fermi GBM Localizations of Gamma-Ray Bursts , 2019, The Astrophysical Journal.

[27]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[28]  A. Miller,et al.  ZTF Early Observations of Type Ia Supernovae , 2020 .

[29]  S. Golenetskii,et al.  Classification of gamma-ray bursts observed with Konus-Wind , 2019, Journal of Physics: Conference Series.

[30]  S. Nissanke,et al.  Implications of the search for optical counterparts during the first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run: possible limits on the ejecta mass and binary properties , 2019, Monthly Notices of the Royal Astronomical Society.

[31]  Adam A. Miller,et al.  ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample , 2019, The Astrophysical Journal.

[32]  J. Turner,et al.  DRAGONS - Data Reduction for Astronomy from Gemini Observatory North and South , 2019 .

[33]  Eugene Serabyn,et al.  GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR , 2019, The Astrophysical Journal.

[34]  Umaa Rebbapragada,et al.  Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[35]  M. Bulla,et al.  possis: predicting spectra, light curves, and polarization for multidimensional models of supernovae and kilonovae , 2019, Monthly Notices of the Royal Astronomical Society.

[36]  F. Team GRB 190610B: Fermi GBM Final Real-time Localization. , 2019 .

[37]  A. Mahabal,et al.  GROWTH on S190510g: DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate , 2019, The Astrophysical Journal.

[38]  A. Lien,et al.  The afterglow and kilonova of the short GRB 160821B , 2019, Monthly Notices of the Royal Astronomical Society.

[39]  Benjamin D. Johnson,et al.  Prospector: Stellar population inference from spectra and SEDs , 2019 .

[40]  A. Mahabal,et al.  Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves , 2019, Astronomy & Astrophysics.

[41]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[42]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[43]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[44]  Eric Burns,et al.  2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[45]  D. A. Kann,et al.  Four GRB supernovae at redshifts between 0.4 and 0.8 , 2018, Astronomy & Astrophysics.

[46]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[47]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[48]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[49]  Matthew J. Graham,et al.  The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.

[50]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[51]  S. Smartt,et al.  Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  J. Fynbo,et al.  VLT/X-shooter GRBs: Individual extinction curves of star-forming regions , 2018, 1805.07016.

[53]  Eran O. Ofek,et al.  catsHTM: A Tool for Fast Accessing and Cross-matching Large Astronomical Catalogs , 2018, Publications of the Astronomical Society of the Pacific.

[54]  M. Chan,et al.  Optimizing searches for electromagnetic counterparts of gravitational wave triggers , 2018, 1803.02255.

[55]  T. Sakamoto,et al.  The outflow structure of GW170817 from late-time broad-band observations , 2018, 1801.06516.

[56]  K. Wiersema,et al.  The Diversity of Kilonova Emission in Short Gamma-Ray Bursts , 2017, The Astrophysical Journal.

[57]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[58]  E. B. Erger,et al.  Target-of-Opportunity Observations of Gravitational Wave Events : Essential and Efficient , 2018 .

[59]  P. Cowperthwaite,et al.  The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications , 2017, 1710.11576.

[60]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[61]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[62]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[63]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[64]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[65]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[66]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[67]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[68]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[69]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[70]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[71]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[72]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[73]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[74]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[75]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[76]  Bhal Chandra Joshi,et al.  The Upgraded GMRT:Opening New Windows on the Radio Universe , 2017 .

[77]  R. Cutri,et al.  The WISE AGN Catalog , 2017, 1706.09901.

[78]  Christopher L. Fryer,et al.  Infrared Emission from Kilonovae: The Case of the Nearby Short Hard Burst GRB 160821B , 2017, 1706.04647.

[79]  J. P. Malkar,et al.  The Cadmium Zinc Telluride Imager on AstroSat , 2017, Journal of Astrophysics and Astronomy.

[80]  Armin Rest,et al.  Observations of the GRB Afterglow ATLAS17aeu and Its Possible Association with GW 170104 , 2017, 1706.00175.

[81]  J. Granot,et al.  A common central engine for long gamma-ray bursts and Type Ib/c supernovae , 2017, 1705.00281.

[82]  M. Cappellari Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions , 2016, 1607.08538.

[83]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[84]  Tom Barclay,et al.  SNCosmo: Python library for supernova cosmology , 2016 .

[85]  J. Greiner,et al.  Awakening the BALROG (BAyesian Location Reconstruction Of GRBs): A new paradigm in spectral and location analysis of gamma ray bursts , 2016, 1610.07385.

[86]  P. Vinod,et al.  The Cadmium Zinc Telluride Imager on AstroSat , 2016, 1608.03408.

[87]  P. E. Nugent,et al.  PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.

[88]  Z. Cano,et al.  The Observer's Guide to the Gamma-Ray Burst-Supernova Connection , 2016, 1604.03549.

[89]  S. Golenetskii,et al.  THE SECOND KONUS-WIND CATALOG OF SHORT GAMMA-RAY BURSTS , 2016, 1603.06832.

[90]  S. Bose,et al.  An Enhanced Method for Scheduling Observations of Large Sky Error Regions for Finding Optical Counterparts to Transients , 2016, 1603.01689.

[91]  E. Beshore,et al.  A fast method for quantifying observational selection effects in asteroid surveys , 2016 .

[92]  P. N. Bhat,et al.  The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years , 2016, 1601.05206.

[93]  E. Ofek,et al.  PROPER IMAGE SUBTRACTION—OPTIMAL TRANSIENT DETECTION, PHOTOMETRY, AND HYPOTHESIS TESTING , 2016, 1601.02655.

[94]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[95]  J. Graham,et al.  THE ABSOLUTE RATE OF LGRB FORMATION , 2015, 1511.01466.

[96]  Edo Berger,et al.  A DECADE OF SHORT-DURATION GAMMA-RAY BURST BROADBAND AFTERGLOWS: ENERGETICS, CIRCUMBURST DENSITIES, AND JET OPENING ANGLES , 2015, 1509.02922.

[97]  L. Sironi,et al.  Relativistic Shocks: Particle Acceleration and Magnetization , 2015, 1506.02034.

[98]  D. A. Kann,et al.  iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER , 2015, 1504.00673.

[99]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[100]  Stefano Covino,et al.  A possible macronova in the late afterglow of the long–short burst GRB 060614 , 2015, Nature Communications.

[101]  E. Nakar A UNIFIED PICTURE FOR LOW-LUMINOSITY AND LONG GAMMA-RAY BURSTS BASED ON THE EXTENDED PROGENITOR OF llGRB 060218/SN 2006AJ , 2015, 1503.00441.

[102]  Brian D. Bue,et al.  THE NEEDLE IN THE 100 deg2 HAYSTACK: UNCOVERING AFTERGLOWS OF FERMI GRBs WITH THE PALOMAR TRANSIENT FACTORY , 2015, 1501.00495.

[103]  J. Prochaska,et al.  A detailed study of the optical attenuation of gamma-ray bursts in the Swift era , 2014, 1412.6530.

[104]  A. J. van der Horst,et al.  LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR , 2014, 1411.2685.

[105]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[106]  Roland Diehl,et al.  THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: FOUR YEARS OF DATA , 2014, 1401.5069.

[107]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[108]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[109]  R. Preece,et al.  BATSE Observations of Gamma-Ray Burst Spectra , 2013 .

[110]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[111]  Peter E. Nugent,et al.  DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg2: iPTF13bxl AND GRB 130702A , 2013, 1307.5851.

[112]  E. Berger,et al.  AN r-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B , 2013, 1306.3960.

[113]  David Polishook,et al.  DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION , 2013, 1304.4236.

[114]  R. Starling,et al.  Calibration of X-ray absorption in our Galaxy , 2013, 1303.0843.

[115]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[116]  T. Piran,et al.  The long, the short and the weak: the origin of gamma-ray bursts , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[117]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[118]  P. Massey,et al.  As Big and As Good As It Gets: The Large Monolithic Imager for Lowell Observatory's 4.3-m Discovery Channel Telescope , 2013 .

[119]  Tsvi Piran,et al.  SHORT VERSUS LONG AND COLLAPSARS VERSUS NON-COLLAPSARS: A QUANTITATIVE CLASSIFICATION OF GAMMA-RAY BURSTS , 2012, 1210.0068.

[120]  P. Schady Gamma-ray burst afterglows as probes of the ISM , 2012 .

[121]  E. Wright,et al.  MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS , 2012, 1205.0811.

[122]  É. Bertin Automated Morphometry with SExtractor and PSFEx , 2011 .

[123]  Daniel E. Holz,et al.  LOCALIZING COMPACT BINARY INSPIRALS ON THE SKY USING GROUND-BASED GRAVITATIONAL WAVE INTERFEROMETERS , 2011, 1105.3184.

[124]  N. Suntzeff,et al.  THE ULTIMATE LIGHT CURVE OF SN 1998bw/GRB 980425 , 2011, 1106.1695.

[125]  E. Berger,et al.  A BEAMING-INDEPENDENT ESTIMATE OF THE ENERGY DISTRIBUTION OF LONG GAMMA-RAY BURSTS: INITIAL RESULTS AND FUTURE PROSPECTS , 2011, 1101.0603.

[126]  T. Sakamoto,et al.  THE SECOND SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG , 2011, 1104.4689.

[127]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[128]  Roland Diehl,et al.  TIME-RESOLVED SPECTROSCOPY OF THE THREE BRIGHTEST AND HARDEST SHORT GAMMA-RAY BURSTS OBSERVED WITH THE FERMI GAMMA-RAY BURST MONITOR , 2010, 1009.5045.

[129]  R. Preece,et al.  A NEW DISCRIMINATOR FOR GAMMA-RAY BURST CLASSIFICATION: THE Epeak–FLUENCE ENERGY RATIO , 2010, 1009.2105.

[130]  E. Berger,et al.  THE STELLAR AGES AND MASSES OF SHORT GAMMA-RAY BURST HOST GALAXIES: INVESTIGATING THE PROGENITOR DELAY TIME DISTRIBUTION AND THE ROLE OF MASS AND STAR FORMATION IN THE SHORT GAMMA-RAY BURST RATE , 2010, 1009.1147.

[131]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[132]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[133]  Nathaniel R. Butler,et al.  GRB 090426: the environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609 , 2009, 0907.1661.

[134]  F. Pedichini,et al.  GRB 090426: the farthest short gamma-ray burst? , 2009, 0911.0046.

[135]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[136]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[137]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[138]  F. Ryde On the origin of gamma-ray bursts , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[139]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[140]  Puragra Guhathakurta,et al.  Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS) , 2007, 0711.0808.

[141]  Zhibin Zhang,et al.  An analysis of the durations of Swift gamma-ray bursts , 2007, 0708.4049.

[142]  K. Golap,et al.  CASA Architecture and Applications , 2007 .

[143]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[144]  E. Nakar Short-hard gamma-ray bursts , 2007, astro-ph/0701748.

[145]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[146]  L. Kewley,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[147]  Eric Bertin,et al.  Automatic Astrometric and Photometric Calibration with SCAMP , 2006 .

[148]  P. B. Cameron,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[149]  J.-L. Atteia,et al.  Discovery of the short γ-ray burst GRB 050709 , 2005, Nature.

[150]  Jesper Sollerman,et al.  The optical afterglow of the short γ-ray burst GRB 050709 , 2005, Nature.

[151]  N. Gehrels,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[152]  V. Lipunov,et al.  The Master Mobile Astronomical System. Optical Observations of Gamma-Ray Bursts , 2005 .

[153]  T. Sakamoto,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[154]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[155]  D. Yonetoku,et al.  Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation , 2003, astro-ph/0309217.

[156]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[157]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[158]  Stephen S. Eikenberry,et al.  A Wide-Field Infrared Camera for the Palomar 200-inch Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[159]  N. Masetti,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[160]  A. Panaitescu,et al.  Properties of Relativistic Jets in Gamma-Ray Burst Afterglows , 2001, astro-ph/0109124.

[161]  Emmanuel Bertin,et al.  The TERAPIX Pipeline , 2002 .

[162]  R. Sari,et al.  The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows , 2001, astro-ph/0108027.

[163]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[164]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[165]  J. Hjorth,et al.  The Supernova-Gamma-Ray Burst Connection , 1998, astro-ph/9806212.

[166]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[167]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[168]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[169]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[170]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[171]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[172]  H. Mcalister Science Objectives , 2022 .