Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength

[1]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[2]  M. E. Haddad,et al.  Prediction of non propagating cracks , 1979 .

[3]  K. Miller THE SHORT CRACK PROBLEM , 1982 .

[4]  S. Nemat-Nasser,et al.  Growth and stability of interacting surface flaws of arbitrary shape , 1983 .

[5]  R. Ritchie,et al.  Propagation of short fatigue cracks , 1984 .

[6]  J. Newman A crack opening stress equation for fatigue crack growth , 1984 .

[7]  M. Isida,et al.  Analysis of an arbitrarily shaped surface crack and stress field at crack front near surface. , 1985 .

[8]  R. Forman,et al.  Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders , 1986 .

[9]  R. Pippan,et al.  The influence of crack length on fatigue crack growth in deep sharp notches , 1987 .

[10]  Y. Akiniwa,et al.  Resistance-curve method for predicting propagation threshold of short fatigue cracks at notches , 1988 .

[11]  T. Seeger,et al.  THE CONSEQUENCES OF SHORT CRACK CLOSURE ON FATIGUE CRACK GROWTH UNDER VARIABLE AMPLITUDE LOADING , 1991 .

[12]  K. Miller THE TWO THRESHOLDS OF FATIGUE BEHAVIOUR , 1993 .

[13]  Y. Murakami Inclusion Rating by Statistics of Extreme Values and Its Application to Fatigue Strength Prediction and Quality Control of Materials , 1994, Journal of research of the National Institute of Standards and Technology.

[14]  Y. Murakami,et al.  Effects of defects, inclusions and inhomogeneities on fatigue strength , 1994 .

[15]  R. Hertzberg On the calculation of closure-free fatigue crack propagation data in monolithic metal alloys , 1995 .

[16]  J. Newman,et al.  Fatigue-life prediction methodology using small-crack theory , 1999 .

[17]  Y. Murakami,et al.  Small Defects and Inhomogeneities in Fatigue Strength: Experiments, Models and Statistical Implications , 1999 .

[18]  R. Pippan,et al.  Determination of the length dependence of the threshold for fatigue crack propagation , 2002 .

[19]  Y. Murakami Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions , 2002 .

[20]  A. F. Grandt,et al.  Fundamentals of Structural Integrity: Damage Tolerant Design and Nondestructive Evaluation , 2003 .

[21]  C. Sonsino Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety , 2007 .

[22]  J. Newman,et al.  Compression Precracking Methods to Generate Near-Threshold Fatigue-Crack-Growth-Rate Data , 2010 .

[23]  Stefano Beretta,et al.  Modelling of fatigue thresholds for small cracks in a mild steel by “Strip-Yield” model , 2009 .

[24]  Yongming Liu,et al.  Probabilistic fatigue life prediction using an equivalent initial flaw size distribution , 2009 .

[25]  Damien Buchbinder,et al.  Generative Fertigung von Aluminiumbauteilen für die Serienproduktion - AluGenerativ : Abschlussbericht ; Projektlaufzeit: Februar 2007 - Januar 2010 , 2011 .

[26]  E. Brandl,et al.  Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior , 2012 .

[27]  F. Walther,et al.  High Cycle Fatigue (HCF) Performance of Ti-6Al-4V Alloy Processed by Selective Laser Melting , 2013 .

[28]  M. Vormwald Elastic-Plastic Fatigue Crack Growth , 2013 .

[29]  J. Kruth,et al.  Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder , 2013 .

[30]  H. Maier,et al.  On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance , 2013 .

[31]  L. Dobrzański,et al.  Surface quality in selective laser melting of metal powders , 2013 .

[32]  M. Ramulu,et al.  Fatigue performance evaluation of selective laser melted Ti–6Al–4V , 2014 .

[33]  F. Walther,et al.  Computed tomography for characterization of fatigue performance of selective laser melted parts , 2015 .

[34]  S. Pannala,et al.  The metallurgy and processing science of metal additive manufacturing , 2016 .

[35]  Mustafa Megahed,et al.  Towards rapid qualification of powder-bed laser additively manufactured parts , 2016, Integrating Materials and Manufacturing Innovation.

[36]  John J. Lewandowski,et al.  Overview of Materials Qualification Needs for Metal Additive Manufacturing , 2016 .

[37]  A. Rubenchik,et al.  Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones , 2015, 1512.02593.

[38]  Muneer Khan Mohammed,et al.  Effect of laser ablation parameters on surface improvement of electron beam melted parts , 2016 .

[39]  T. Baumert,et al.  Local deformation at micro-notches and crack initiation in an intermetallic γ-TiAl-alloy , 2016 .

[40]  Lars-Erik Rännar,et al.  The effect of EBM process parameters upon surface roughness , 2016 .

[41]  Uwe Zerbst,et al.  About the fatigue crack propagation threshold of metals as a design criterion – A review , 2016 .

[42]  R. Hague,et al.  Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography , 2016 .

[43]  C. Donne,et al.  Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V , 2016 .

[44]  Mohsen Seifi,et al.  Metal Additive Manufacturing: A Review of Mechanical Properties , 2016 .

[45]  T. Mower,et al.  Mechanical behavior of additive manufactured, powder-bed laser-fused materials , 2016 .

[46]  Michael Gschweitl,et al.  Qualification of AM parts: Extreme value statistics applied to tomographic measurements , 2017 .

[47]  N. Shamsaei,et al.  Additive manufacturing of fatigue resistant materials: Challenges and opportunities , 2017 .

[48]  J. Shen,et al.  Strength and strain hardening of a selective laser melted AlSi10Mg alloy , 2017 .

[49]  Daniel P. Satko,et al.  Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V , 2017 .

[50]  Aurélien Naldi,et al.  Erratum: The combination of the functionalities of feedback circuits is determinant for the attractors’ number and size in pathway-like Boolean networks , 2017, Scientific Reports.

[51]  E. Maire,et al.  Fatigue properties of EBM as-built and chemically etched thin parts , 2017 .

[52]  T. Uchida,et al.  Effects of Defects, Surface Roughness and HIP on Fatigue Strength of Ti-6Al-4V manufactured by Additive Manufacturing , 2017 .

[53]  F. Walther,et al.  Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy , 2017 .

[54]  S. Beretta,et al.  Quality control of cast iron: extreme value statistics applied to CT measurements , 2017 .

[55]  A. Fatemi,et al.  Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect , 2017 .

[56]  C. Sonsino,et al.  Multiaxial fatigue assessment for automotive safety components of cast aluminium EN AC-42000 T6 (G-AlSi7Mg0.3 T6) under constant and variable amplitude loading , 2017 .

[57]  S. Beretta,et al.  A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes , 2017 .

[58]  G. Nicoletto,et al.  As-built surface layer characterization and fatigue behavior of DMLS Ti6Al4V , 2017 .

[59]  Michael Gorelik,et al.  Additive manufacturing in the context of structural integrity , 2017 .

[60]  J. Buffière,et al.  Location, location & size: defects close to surfaces dominate fatigue crack initiation , 2017, Scientific Reports.