Practical implementation of a quantum backtracking algorithm

In previous work, Montanaro presented a method to obtain quantum speedups for backtracking algorithms, a general meta-algorithm to solve constraint satisfaction problems (CSPs). In this work, we derive a space efficient implementation of this method. Assume that we want to solve a CSP with $m$ constraints on $n$ variables and that the union of the domains in which these variables take their value is of cardinality $d$. Then, we show that the implementation of Montanaro's backtracking algorithm can be done by using $O(n \log d)$ data qubits. We detail an implementation of the predicate associated to the CSP with an additional register of $O(\log m)$ qubits. We explicit our implementation for graph coloring and SAT problems, and present simulation results. Finally, we discuss the impact of the usage of static and dynamic variable ordering heuristics in the quantum setting.

[1]  Daniel Smith-Tone,et al.  Report on Post-Quantum Cryptography , 2016 .

[2]  Bart Selman,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[3]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[4]  Stacey Jeffery,et al.  Time-Efficient Quantum Walks for 3-Distinctness , 2013, ICALP.

[5]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[6]  Ashley Montanaro,et al.  Applying quantum algorithms to constraint satisfaction problems , 2018, Quantum.

[7]  Ryan O'Donnell,et al.  Special Issue: CCC 2017: Guest Editor's Foreword , 2018, Theory of Computing.

[8]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[9]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[10]  Aleksandrs Belovs,et al.  Quantum Walks and Electric Networks , 2013, 1302.3143.

[11]  Rina Dechter,et al.  Experimental Evaluation of Preprocessing Techniques in Constraint Satisfaction Problems , 1989, IJCAI.

[12]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[13]  D. de Werra,et al.  An introduction to timetabling , 1985 .

[14]  Vahid Lotfi,et al.  A graph coloring algorithm for large scale scheduling problems , 1986, Comput. Oper. Res..

[15]  Paolo Toth,et al.  A survey on vertex coloring problems , 2010, Int. Trans. Oper. Res..

[16]  Peter van Beek,et al.  Backtracking Search Algorithms , 2006, Handbook of Constraint Programming.

[17]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[18]  B. Wah,et al.  Algorithms for the Satisfiability Problem , 2018 .

[19]  Jun Gu,et al.  Algorithms for the satisfiability (SAT) problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[20]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[21]  Andris Ambainis,et al.  Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games , 2017, STOC.

[22]  Ashley Montanaro,et al.  Quantum walk speedup of backtracking algorithms , 2015, Theory Comput..

[23]  Ashley Montanaro,et al.  Quantum speedup of branch-and-bound algorithms , 2019, Physical Review Research.

[24]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[25]  Yoshinori Aono,et al.  Quantum Lattice Enumeration and Tweaking Discrete Pruning , 2018, IACR Cryptol. ePrint Arch..

[26]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.