Hodge Theory of Cubic Fourfolds, Their Fano Varieties, and Associated K3 Categories
暂无分享,去创建一个
[1] E. Brakkee,et al. Two polarised K3 surfaces associated to the same cubic fourfold , 2018, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] M. Verbitsky. Mapping class group and global Torelli theorem for hyperkahler manifolds: an erratum , 2019, 1908.11772.
[3] Emanuele Macrì,et al. Lectures on Non-commutative K3 Surfaces, Bridgeland Stability, and Moduli Spaces , 2018, Lecture Notes of the Unione Matematica Italiana.
[4] Emanuel Reinecke. Autoequivalences of twisted K3 surfaces , 2017, Compositio Mathematica.
[5] D. Huybrechts,et al. Hochschild cohomology versus the Jacobian ring and the Torelli theorem for cubic fourfolds , 2016, Algebraic Geometry.
[6] Anthony Várilly-Alvarado,et al. Kodaira dimension of moduli of special cubic fourfolds , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[7] D. Huybrechts. Finiteness of polarized K3 surfaces and hyperk\"ahler manifolds , 2018, 1801.07040.
[8] D. Huybrechts. The K3 category of a cubic fourfold , 2015, Compositio Mathematica.
[9] D. Huybrechts. Lectures on K3 Surfaces , 2016 .
[10] N. Addington. On two rationality conjectures for cubic fourfolds , 2014, 1405.4902.
[11] Richard P. Thomas,et al. Hodge theory and derived categories of cubic fourfolds , 2012, Duke Mathematical Journal.
[12] M. Verbitsky. Mapping class group and a global Torelli theorem for hyperkähler manifolds , 2013 .
[13] K. Hulek,et al. Fourier–Mukai Partners and Polarised $$\mathop{\mathrm{K3}}\nolimits$$ Surfaces , 2013 .
[14] Franccois Charles. A remark on the Torelli theorem for cubic fourfolds , 2012, 1209.4509.
[15] K. Gandhi. Primes of the form x2 + ny2 , 2012 .
[16] K. Hulek,et al. Fourier-Mukai partners and polarised K3 surfaces , 2012, 1206.4558.
[17] D. Huybrechts. A global Torelli theorem for hyperkaehler manifolds (after Verbitsky) , 2011, 1106.5573.
[18] E. Markman. A survey of Torelli and monodromy results for holomorphic-symplectic varieties , 2011, 1101.4606.
[19] A. Kuznetsov. Derived Categories of Cubic Fourfolds , 2008, 0808.3351.
[20] Y. Tschinkel,et al. Cohomological and Geometric Approaches to Rationality Problems , 2010 .
[21] M. Verbitsky. A global Torelli theorem for hyperkahler manifolds , 2009, 0908.4121.
[22] G. Sankaran,et al. Abelianisation of orthogonal groups and the fundamental group of modular varieties , 2008, 0810.1614.
[23] D. Huybrechts,et al. Derived equivalences of K3 surfaces and orientation , 2007, 0710.1645.
[24] R. Laza. The moduli space of cubic fourfolds via the period map , 2007, 0705.0949.
[25] E. Looijenga. The period map for cubic fourfolds , 2007, 0705.0951.
[26] Daniel Huybrechts,et al. Fourier-Mukai transforms in algebraic geometry , 2006 .
[27] Yukinobu Toda. Deformations and Fourier-Mukai transforms , 2005, math/0502571.
[28] D. Huybrechts,et al. Equivalences of twisted K3 surfaces , 2004, math/0409030.
[29] A. Kuznetsov. Derived categories of cubic and V14 threefolds , 2003, math/0303037.
[30] A. Bondal,et al. Derived Categories of Coherent Sheaves , 2002, math/0206295.
[31] B. Hassett. Special Cubic Fourfolds , 2000, Compositio Mathematica.
[32] C. Voisin. Théorème de Torelli pour les cubiques de ℙ5 , 1986 .
[33] A. Borel. Some metric properties of arithmetic quotients of symmetric spaces , 1970 .
[34] W. L. Baily,et al. Compactification of Arithmetic Quotients of Bounded Symmetric Domains , 1966 .