Hodge Theory of Cubic Fourfolds, Their Fano Varieties, and Associated K3 Categories

[1]  E. Brakkee,et al.  Two polarised K3 surfaces associated to the same cubic fourfold , 2018, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  M. Verbitsky Mapping class group and global Torelli theorem for hyperkahler manifolds: an erratum , 2019, 1908.11772.

[3]  Emanuele Macrì,et al.  Lectures on Non-commutative K3 Surfaces, Bridgeland Stability, and Moduli Spaces , 2018, Lecture Notes of the Unione Matematica Italiana.

[4]  Emanuel Reinecke Autoequivalences of twisted K3 surfaces , 2017, Compositio Mathematica.

[5]  D. Huybrechts,et al.  Hochschild cohomology versus the Jacobian ring and the Torelli theorem for cubic fourfolds , 2016, Algebraic Geometry.

[6]  Anthony Várilly-Alvarado,et al.  Kodaira dimension of moduli of special cubic fourfolds , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[7]  D. Huybrechts Finiteness of polarized K3 surfaces and hyperk\"ahler manifolds , 2018, 1801.07040.

[8]  D. Huybrechts The K3 category of a cubic fourfold , 2015, Compositio Mathematica.

[9]  D. Huybrechts Lectures on K3 Surfaces , 2016 .

[10]  N. Addington On two rationality conjectures for cubic fourfolds , 2014, 1405.4902.

[11]  Richard P. Thomas,et al.  Hodge theory and derived categories of cubic fourfolds , 2012, Duke Mathematical Journal.

[12]  M. Verbitsky Mapping class group and a global Torelli theorem for hyperkähler manifolds , 2013 .

[13]  K. Hulek,et al.  Fourier–Mukai Partners and Polarised $$\mathop{\mathrm{K3}}\nolimits$$ Surfaces , 2013 .

[14]  Franccois Charles A remark on the Torelli theorem for cubic fourfolds , 2012, 1209.4509.

[15]  K. Gandhi Primes of the form x2 + ny2 , 2012 .

[16]  K. Hulek,et al.  Fourier-Mukai partners and polarised K3 surfaces , 2012, 1206.4558.

[17]  D. Huybrechts A global Torelli theorem for hyperkaehler manifolds (after Verbitsky) , 2011, 1106.5573.

[18]  E. Markman A survey of Torelli and monodromy results for holomorphic-symplectic varieties , 2011, 1101.4606.

[19]  A. Kuznetsov Derived Categories of Cubic Fourfolds , 2008, 0808.3351.

[20]  Y. Tschinkel,et al.  Cohomological and Geometric Approaches to Rationality Problems , 2010 .

[21]  M. Verbitsky A global Torelli theorem for hyperkahler manifolds , 2009, 0908.4121.

[22]  G. Sankaran,et al.  Abelianisation of orthogonal groups and the fundamental group of modular varieties , 2008, 0810.1614.

[23]  D. Huybrechts,et al.  Derived equivalences of K3 surfaces and orientation , 2007, 0710.1645.

[24]  R. Laza The moduli space of cubic fourfolds via the period map , 2007, 0705.0949.

[25]  E. Looijenga The period map for cubic fourfolds , 2007, 0705.0951.

[26]  Daniel Huybrechts,et al.  Fourier-Mukai transforms in algebraic geometry , 2006 .

[27]  Yukinobu Toda Deformations and Fourier-Mukai transforms , 2005, math/0502571.

[28]  D. Huybrechts,et al.  Equivalences of twisted K3 surfaces , 2004, math/0409030.

[29]  A. Kuznetsov Derived categories of cubic and V14 threefolds , 2003, math/0303037.

[30]  A. Bondal,et al.  Derived Categories of Coherent Sheaves , 2002, math/0206295.

[31]  B. Hassett Special Cubic Fourfolds , 2000, Compositio Mathematica.

[32]  C. Voisin Théorème de Torelli pour les cubiques de ℙ5 , 1986 .

[33]  A. Borel Some metric properties of arithmetic quotients of symmetric spaces , 1970 .

[34]  W. L. Baily,et al.  Compactification of Arithmetic Quotients of Bounded Symmetric Domains , 1966 .