Single server retrial queues with two way communication

The main aim of this paper is to study the steady state behavior of an M/G/1-type retrial queue in which there are two flows of arrivals namely ingoing calls made by regular customers and outgoing calls made by the server when it is idle. We carry out an extensive stationary analysis of the system, including stability condition, embedded Markov chain, steady state joint distribution of the server state and the number of customers in the orbit (i.e., the retrial group) and calculation of the first moments. We also obtain light-tailed asymptotic results for the number of customers in the orbit. We further formulate a more complicate but realistic model where the arrivals and the service time distributions are modeled in terms of the Markovian arrival process (MAP) and the phase (PH) type distribution.

[1]  Jeongsim Kim RETRIAL QUEUEING SYSTEM WITH COLLISION AND IMPATIENCE , 2010 .

[2]  Linn I. Sennott,et al.  Technical Note - Mean Drifts and the Non-Ergodicity of Markov Chains , 1983, Oper. Res..

[3]  Jesús R. Artalejo,et al.  Accessible bibliography on retrial queues , 1999 .

[4]  Gautam Choudhury Steady state analysis of an M/G/1 queue with linear retrial policy and two phase service under Bernoulli vacation schedule , 2008 .

[5]  Robert B. Cooper,et al.  An Introduction To Queueing Theory , 2016 .

[6]  Jesús R. Artalejo,et al.  On the distribution of the number of retrials , 2007 .

[7]  Jesus R. Artalejo,et al.  Accessible bibliography on retrial queues: Progress in 2000-2009 , 2010, Math. Comput. Model..

[8]  Jesús R. Artalejo,et al.  Retrial Queueing Systems: A Computational Approach , 2008 .

[9]  Bong Dae Choi,et al.  The M/M/c retrial queue with geometric loss and feedback☆ , 1998 .

[10]  Yutaka Takahashi,et al.  A simple algorithm for the rate matrices of level-dependent QBD processes , 2010, QTNA.

[11]  Achyutha Krishnamoorthy,et al.  An M|G|1 Retrial Queue with Nonpersistent Customers and Orbital Search , 2005 .

[12]  Yutaka Takahashi,et al.  State-dependent M/M/c/c + r retrial queues with Bernoulli abandonment , 2010 .

[13]  Sung-Seok Ko,et al.  Tail Asymptotics for the Queue Size Distribution in an M/G/1 Retrial Queue , 2007, Journal of Applied Probability.

[14]  Jesús R. Artalejo,et al.  Steady state solution of a single-server queue with linear repeated requests , 1997, Journal of Applied Probability.

[15]  Sandjai Bhulai,et al.  A queueing model for call blending in call centers , 2003, IEEE Trans. Autom. Control..

[16]  Tien Van Do,et al.  An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity , 2010 .

[17]  Ronald W. Wolff,et al.  Poisson Arrivals See Time Averages , 1982, Oper. Res..

[18]  Thomas Hanschke Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts , 1987 .

[19]  G. Falin Model of coupled switching in presence of recurrent calls , 1979 .

[20]  Jesus R. Artalejo,et al.  Numerical Calculation of the Stationary Distribution of the Main Multiserver Retrial Queue , 2002, Ann. Oper. Res..

[21]  B. Krishna Kumar,et al.  On multiserver feedback retrial queue with finite buffer , 2009 .

[22]  Jesus R. Artalejo,et al.  Markovian single server retrial queues with two way communication , 2011 .

[23]  Jinbiao Wu,et al.  Analysis of the finite source MAP/PH/N retrial G-queue operating in a random environment , 2011 .

[24]  Y. Shin,et al.  M/M/s queue with impatient customers and retrials , 2009 .

[25]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[26]  Marcel F. Neuts,et al.  Numerical investigation of a multiserver retrial model , 1990, Queueing Syst. Theory Appl..

[27]  Jesus R. Artalejo,et al.  Mean Value Analysis of Single Server retrial Queues , 2010, Asia Pac. J. Oper. Res..

[28]  Antonio Gómez-Corral,et al.  A bibliographical guide to the analysis of retrial queues through matrix analytic techniques , 2006, Ann. Oper. Res..

[29]  Gautam Choudhury,et al.  A BATCH ARRIVAL RETRIAL QUEUE WITH GENERAL RETRIAL TIMES UNDER BERNOULLI VACATION SCHEDULE FOR UNRELIABLE SERVER AND DELAYING REPAIR , 2012 .