Approximation algorithms for geometric tour and network design problems (extended abstract)

Red-Blue Separation Problem (RBSP): Consider the problem of finding a minimum-perimeter Jordan curve (necessarily, a simple polygon) that separates a set of “red” points, R, from a set of “blue” points, B. This problem is seen to be NP-hard, using a reduction from the Euclidean traveling salesman problem [3, 12]. (Replace each city in the TSP instance by a pair of points, one red and one blue, very close together.) While Euclidean TSP can be approximated to within a factor of 1.5 times optimal (using Christofides’ heuristic [9]), the seemingly related RBSP has defied previous attempts to devise a provably good approximation algorithm. We provide an O(log m) approximation bound algorithm for RBSP, where m < n is the minimum number of sides

[1]  Edmund Ihler,et al.  On Shortest Networks for Classes of Points in the Plane , 1991, Workshop on Computational Geometry.

[2]  Christos Levcopoulos Fast heuristics for minimum length rectangular partitions of polygons , 1986, SCG '86.

[3]  Gabriele Reich,et al.  Beyond Steiner's Problem: A VLSI Oriented Generalization , 1989, WG.

[4]  Dorit S. Hochbaum,et al.  An O(log k) approximation algorithm for the k minimum spanning tree problem in the plane , 1994, STOC '94.

[5]  Subhash Suri,et al.  A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.

[6]  Kenneth L. Clarkson,et al.  Approximation algorithms for planar traveling salesman tours and minimum-length triangulations , 1991, SODA '91.

[7]  Esther M. Arkin,et al.  Approximation Algorithms for the Geometric Covering Salesman Problem , 1994, Discret. Appl. Math..

[8]  C. Levcopoulos Heuristics for minimum decompositions of polygons , 1987 .

[9]  F. Frances Yao,et al.  Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..

[10]  Santosh S. Vempala,et al.  A constant-factor approximation for the k-MST problem in the plane , 1995, STOC '95.

[11]  Simeon C. Ntafos,et al.  Optimum watchman routes , 1986, SCG '86.

[12]  F. Frances Yao,et al.  Optimal binary space partitions for orthogonal objects , 1990, SODA '90.

[13]  Andrzej Lingas,et al.  Bounds on the Length of Convex Partitions of Polygons , 1984, FSTTCS.

[14]  David Eppstein,et al.  Approximating the minimum weight triangulation , 1992, SODA '92.

[15]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[16]  Peter Eades,et al.  The complexity of computing minimum separating polygons , 1993, Pattern Recognit. Lett..

[17]  Santosh S. Vempala,et al.  Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen , 1995, STOC '95.

[18]  Mark de Berg,et al.  Rectilinear Decompositions with Low Stabbing Number , 1994, Inf. Process. Lett..