Deep U-Net architecture with curriculum learning for myocardial pathology segmentation in multi-sequence cardiac magnetic resonance images

[1]  Xiahai Zhuang,et al.  AtrialJSQnet: A New Framework for Joint Segmentation and Quantification of Left Atrium and Scars Incorporating Spatial and Shape Information , 2020, Medical Image Anal..

[2]  Yuqi Fang,et al.  SK-Unet: An Improved U-Net Model With Selective Kernel for the Segmentation of LGE Cardiac MR Images , 2021, IEEE Sensors Journal.

[3]  Xin Yu,et al.  Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot Medical Image Segmentation , 2021, AAAI.

[4]  Jens Petersen,et al.  nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.

[5]  Sergio Escalera,et al.  Stacked BCDU-Net with Semantic CMR Synthesis: Application to Myocardial Pathology Segmentation Challenge , 2020, MyoPS@MICCAI.

[6]  Markus J. Ankenbrand,et al.  Exploring Ensemble Applications for Multi-sequence Myocardial Pathology Segmentation , 2020, MyoPS@MICCAI.

[7]  Zhen Zhang,et al.  Multi-Modality Pathology Segmentation Framework: Application to Cardiac Magnetic Resonance Images , 2020, MyoPS@MICCAI.

[8]  Yukun Cao,et al.  Learning Directional Feature Maps for Cardiac MRI Segmentation , 2020, MICCAI.

[9]  Lanfen Lin,et al.  UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Tianxu Zhang,et al.  Joint Analysis and Weighted Synthesis Sparsity Priors for Simultaneous Denoising and Destriping Optical Remote Sensing Images , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Mohammad Sohel Rahman,et al.  MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation , 2019, Neural Networks.

[12]  Hong Yu,et al.  Dual Attention U-Net for Multi-sequence Cardiac MR Images Segmentation , 2020, MyoPS@MICCAI.

[13]  Jun Ma,et al.  Cascaded Framework with Complementary CMR Information for Myocardial Pathology Segmentation , 2020, MyoPS@MICCAI.

[14]  Zhibin Liao,et al.  EfficientSeg: A Simple But Efficient Solution to Myocardial Pathology Segmentation Challenge , 2020, MyoPS@MICCAI.

[15]  Guotai Wang,et al.  Myocardial Edema and Scar Segmentation Using a Coarse-to-Fine Framework with Weighted Ensemble , 2020, MyoPS@MICCAI.

[16]  E. Bertino,et al.  Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images: First Challenge, MyoPS 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings , 2020, MyoPS@MICCAI.

[17]  Maxime Sermesant,et al.  Style Data Augmentation for Robust Segmentation of Multi-modality Cardiac MRI , 2019, STACOM@MICCAI.

[18]  D. Rueckert,et al.  Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation , 2019, STACOM@MICCAI.

[19]  Tuan D. Pham,et al.  DUNet: A deformable network for retinal vessel segmentation , 2018, Knowl. Based Syst..

[20]  Xiahai Zhuang,et al.  Multivariate Mixture Model for Myocardial Segmentation Combining Multi-Source Images , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Sara Moccia,et al.  Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images , 2018, Magnetic Resonance Materials in Physics, Biology and Medicine.

[22]  Andriy Myronenko,et al.  3D MRI brain tumor segmentation using autoencoder regularization , 2018, BrainLes@MICCAI.

[23]  Reza Nezafat,et al.  Automated Cardiac MR Scar Quantification in Hypertrophic Cardiomyopathy Using Deep Convolutional Neural Networks. , 2018, JACC. Cardiovascular imaging.

[24]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.

[25]  Eranga Ukwatta,et al.  Myocardial scar segmentation from magnetic resonance images using convolutional neural network , 2018, Medical Imaging.

[26]  Tianxu Zhang,et al.  Spatially adaptive denoising for X-ray cardiovascular angiogram images , 2018, Biomed. Signal Process. Control..

[27]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[28]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..