Efficient Weingarten map and curvature estimation on manifolds

In this paper, we propose an efficient method to estimate the Weingarten map for point cloud data sampled from manifold embedded in Euclidean space. A statistical model is established to analyze the asymptotic property of the estimator. In particular, we show the convergence rate as the sample size tends to infinity. We verify the convergence rate through simulated data and apply the estimated Weingarten map to curvature estimation and point cloud simplification to multiple real data sets.

[1]  Mark D. Plumbley,et al.  Riemannian Optimization Method on the Flag Manifold for Independent Subspace Analysis , 2006, ICA.

[2]  Steven W. Zucker,et al.  Inferring Surface Trace and Differential Structure from 3-D Images , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  F. Wright,et al.  CONVERGENCE AND PREDICTION OF PRINCIPAL COMPONENT SCORES IN HIGH-DIMENSIONAL SETTINGS. , 2012, Annals of statistics.

[4]  Leonidas J. Guibas,et al.  Voronoi-Based Curvature and Feature Estimation from Point Clouds , 2011, IEEE Transactions on Visualization and Computer Graphics.

[5]  Jieqing Feng,et al.  Multi-scale surface reconstruction based on a curvature-adaptive signed distance field , 2018, Comput. Graph..

[6]  Hsi-Yung Feng,et al.  On the normal vector estimation for point cloud data from smooth surfaces , 2005, Comput. Aided Des..

[7]  Leslie G. Ungerleider,et al.  Curvature processing in human visual cortical areas , 2020, NeuroImage.

[8]  T. Rabbani,et al.  SEGMENTATION OF POINT CLOUDS USING SMOOTHNESS CONSTRAINT , 2006 .

[9]  David Levin,et al.  Surface simplification using a discrete curvature norm , 2002, Comput. Graph..

[10]  Helmut Pottmann,et al.  Fitting B-spline curves to point clouds by curvature-based squared distance minimization , 2006, TOGS.

[11]  David Letscher,et al.  On persistent homotopy, knotted complexes and the Alexander module , 2012, ITCS '12.

[12]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[13]  D. Levin,et al.  Optimizing 3D triangulations using discrete curvature analysis , 2001 .

[14]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[15]  Ernest M. Stokely,et al.  Surface Parametrization and Curvature Measurement of Arbitrary 3-D Objects: Five Practical Methods , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Gauss Equation And Injectivity Radii For Subspaces in Spaces of Curvature Bounded Above , 2005, math/0511570.

[17]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[18]  G. P. Leonardi,et al.  Discretization and Approximation of Surfaces Using Varifolds , 2018 .

[19]  M. Rosenblatt,et al.  Multivariate k-nearest neighbor density estimates , 1979 .

[20]  Cl'ement Levrard,et al.  Nonasymptotic rates for manifold, tangent space and curvature estimation , 2017, The Annals of Statistics.

[21]  Robert E. Mahony,et al.  An Extrinsic Look at the Riemannian Hessian , 2013, GSI.

[22]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[23]  Colin Bradley,et al.  Segmentation of a wrap-around model using an active contour , 1997, Comput. Aided Des..

[24]  Gene Cheung,et al.  Point Cloud Denoising via Feature Graph Laplacian Regularization , 2020, IEEE Transactions on Image Processing.

[25]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[26]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[27]  Peter Grindrod,et al.  The Deformed Graph Laplacian and Its Applications to Network Centrality Analysis , 2018, SIAM J. Matrix Anal. Appl..

[28]  Ehud Rivlin,et al.  A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data , 2007, Comput. Vis. Image Underst..

[29]  Leonidas J. Guibas,et al.  Estimating surface normals in noisy point cloud data , 2004, Int. J. Comput. Geom. Appl..

[30]  Gene H. Golub,et al.  Matrix computations , 1983 .

[31]  Konrad Polthier,et al.  Anisotropic smoothing of point sets, , 2005, Comput. Aided Geom. Des..

[32]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[33]  D. Dunson,et al.  Geodesic Distance Estimation with Spherelets , 2019, 1907.00296.

[34]  Michael Steinlechner,et al.  Riemannian Optimization for High-Dimensional Tensor Completion , 2016, SIAM J. Sci. Comput..

[35]  Chia-Hsiang Menq,et al.  Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points , 2001, IEEE Trans. Robotics Autom..

[36]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[37]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[38]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[39]  George Vosselman,et al.  Segmentation of point clouds using smoothness constraints , 2006 .

[40]  Wen Huang,et al.  A Broyden Class of Quasi-Newton Methods for Riemannian Optimization , 2015, SIAM J. Optim..

[41]  L. Rosasco,et al.  Multiscale geometric methods for data sets I: Multiscale SVD, noise and curvature , 2017 .

[42]  Xiaobo Peng,et al.  Direct rapid prototyping from point cloud data without surface reconstruction , 2017 .

[43]  Pierre Alliez,et al.  A Survey of Surface Reconstruction from Point Clouds , 2017, Comput. Graph. Forum.

[44]  A. Singer,et al.  Vector diffusion maps and the connection Laplacian , 2011, Communications on pure and applied mathematics.

[45]  Tamal K. Dey,et al.  Shape Dimension and Approximation from Samples , 2002, SODA '02.

[46]  Paul M. Thompson,et al.  A curvature-based approach to estimate local gyrification on the cortical surface , 2006, NeuroImage.

[47]  Gérard G. Medioni,et al.  Curvature-Augmented Tensor Voting for Shape Inference from Noisy 3D Data , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Dereck S. Meek,et al.  On surface normal and Gaussian curvature approximations given data sampled from a smooth surface , 2000, Comput. Aided Geom. Des..

[49]  S. Rusinkiewicz Estimating curvatures and their derivatives on triangle meshes , 2004 .

[50]  Min Yang,et al.  Segmentation of measured point data using a parametric quadric surface approximation , 1999, Comput. Aided Des..

[51]  Yang Haibo Industrial Design Applications of Surface Reconstruction Algorithm Based on Three Dimensional Point Cloud Data , 2017, 2017 International Conference on Robots & Intelligent System (ICRIS).

[52]  Terry Caelli,et al.  Computation of Surface Geometry and Segmentation Using Covariance Techniques , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Semyung Wang,et al.  A new segmentation method for point cloud data , 2002 .

[54]  Aly A. Farag,et al.  Surfacing Signatures: An Orientation Independent Free-Form Surface Representation Scheme for the Purpose of Objects Registration and Matching , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[56]  HoppeHugues,et al.  Surface Reconstruction from Unorganized Points , 1992 .

[57]  Alexander G. Gray,et al.  Submanifold density estimation , 2009, NIPS.