Revealing the Phase Diagram of Kitaev Materials by Machine Learning: Cooperation and Competition between Spin Liquids

Kitaev materials are promising materials for hosting quantum spin liquids and investigating the interplay of topological and symmetry-breaking phases. We use an unsupervised and interpretable machine-learning method, the tensorial-kernel support vector machine, to study the classical honeycomb Kitaev-$\Gamma$ model in a magnetic field. Our machine learns the global phase diagram and the associated analytical order parameters, including several distinct spin liquids, two exotic $S_3$ magnets, and two modulated $S_3 \times Z_3$ magnets. We find that the extension of Kitaev spin liquids and a field-induced suppression of magnetic order already occur in the large-$S$ limit, implying that critical parts of the physics of Kitaev materials can be understood at the classical level. Moreover, the two $S_3 \times Z_3$ orders are induced by competition between Kitaev and $\Gamma$ spin liquids and feature a previously unknown type of spin-lattice entangled modulation, which requires a matrix description instead of scalar phase factors. Our work provides the first instance of a machine detecting new phases and paves the way towards the development of automated tools to explore unsolved problems in many-body physics.

[1]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[2]  M. Troyer,et al.  Probing the stability of the spin liquid phases in the Kitaev-Heisenberg model using tensor network algorithms , 2014, 1408.4020.

[3]  H. Kee,et al.  Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials , 2015, 1507.06323.

[4]  L. Balents,et al.  Low-Energy Spin Dynamics of the Honeycomb Spin Liquid Beyond the Kitaev Limit. , 2016, Physical review letters.

[5]  Zheng Zhu,et al.  Robust non-Abelian spin liquid and a possible intermediate phase in the antiferromagnetic Kitaev model with magnetic field , 2017, Physical Review B.

[6]  Zhao-Yang Dong,et al.  Theoretical investigation of magnetic dynamics in α − RuCl 3 , 2016, 1612.09515.

[7]  Order-by-disorder and spin-orbital liquids in a distorted Heisenberg-Kitaev model , 2014, 1404.5490.

[8]  S. Do,et al.  Field-induced quantum criticality in the Kitaev system α − RuCl 3 , 2017, 1704.03475.

[9]  M. Vojta,et al.  Honeycomb-Lattice Heisenberg-Kitaev Model in a Magnetic Field: Spin Canting, Metamagnetism, and Vortex Crystals. , 2016, Physical review letters.

[10]  Yang Zhao,et al.  Magnetic order in α -RuCl 3 : A honeycomb-lattice quantum magnet with strong spin-orbit coupling , 2014, 1411.4610.

[11]  G. Jackeli,et al.  Concept and realization of Kitaev quantum spin liquids , 2019, Nature Reviews Physics.

[12]  Juraj Rusnavcko,et al.  Kitaev-like honeycomb magnets: Global phase behavior and emergent effective models , 2019, Physical Review B.

[13]  A. Banerjee,et al.  Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.

[14]  S. Danilkin,et al.  Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α-RuCl_{3}. , 2017, Physical review letters.

[15]  J. van den Brink,et al.  Models and materials for generalized Kitaev magnetism , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  G. Jackeli,et al.  Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. , 2010, Physical review letters.

[17]  S. Okamoto,et al.  Deriving models for the Kitaev spin-liquid candidate material α−RuCl3 from first principles , 2019, Physical Review B.

[18]  X. Chen,et al.  Updated core libraries of the ALPS project , 2016, Comput. Phys. Commun..

[19]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[20]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[21]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[22]  J. Brink,et al.  Nearest-neighbor Kitaev exchange blocked by charge order in electron-doped α-RuCl , 2017 .

[23]  M. Kawamura,et al.  Possible Kitaev Quantum Spin Liquid State in 2D Materials with S=3/2. , 2020, Physical review letters.

[24]  Y. Motome,et al.  Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid , 2018, Nature.

[25]  G. Chern,et al.  Hidden Plaquette Order in a Classical Spin Liquid Stabilized by Strong Off-Diagonal Exchange. , 2018, Physical review letters.

[26]  A. Chernyshev,et al.  Rethinking $\alpha$-RuCl$_3$ , 2020, 2004.10753.

[27]  R. Valentí,et al.  Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales , 2016, 1603.02548.

[28]  Ke Liu,et al.  Learning multiple order parameters with interpretable machines , 2018, Physical Review B.

[29]  P. Stavropoulos,et al.  Characterizing spin-one Kitaev quantum spin liquids , 2020, Physical Review Research.

[30]  J. Brink,et al.  Strain- and pressure-tuned magnetic interactions in honeycomb Kitaev materials , 2018, Physical Review B.

[31]  Jun Zhao,et al.  Effect of spin-orbit coupling on the effective-spin correlation in YbMgGaO 4 , 2016, 1608.06445.

[32]  Ryoya Sano,et al.  Antiferromagnetic Kitaev interaction in f -electron based honeycomb magnets , 2018, Physical Review B.

[33]  Yong Baek Kim,et al.  Magnetic field induced competing phases in spin-orbital entangled Kitaev magnets , 2019, Physical Review Research.

[34]  Yang Qi,et al.  Self-learning Monte Carlo method , 2016, 1610.03137.

[35]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[36]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[37]  N. Perkins,et al.  Classical Spin Liquid Instability Driven By Off-Diagonal Exchange in Strong Spin-Orbit Magnets. , 2016, Physical review letters.

[38]  A. Vishwanath,et al.  Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-Li(2)IrO(3). , 2014, Physical review letters.

[39]  Lei Wang,et al.  Differentiable Programming Tensor Networks , 2019, Physical Review X.

[40]  A. Banerjee,et al.  Anisotropic susceptibilities in the honeycomb Kitaev system α−RuCl3 , 2018, Physical Review B.

[41]  S. Trebst,et al.  Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model , 2018, Nature Communications.

[42]  Steven R White,et al.  Neél order in square and triangular lattice Heisenberg models. , 2007, Physical review letters.

[43]  M. Schmidt,et al.  Anisotropic Ru3+ 4d5 magnetism in the α-RuCl3 honeycomb system: Susceptibility, specific heat, and zero-field NMR , 2014, 1411.6515.

[44]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[45]  B. Normand,et al.  One Proximate Kitaev Spin Liquid in the K-J-Γ Model on the Honeycomb Lattice. , 2019, Physical review letters.

[46]  G. Khaliullin,et al.  Hidden symmetries of the extended Kitaev-Heisenberg model:Implications for the honeycomb-lattice iridates A2IrO3 , 2015, 1502.02587.

[47]  J. Brink,et al.  Spin-orbit excitation energies, anisotropic exchange, and magnetic phases of honeycomb RuCl3 , 2016, 1604.04755.

[48]  R. Valentí,et al.  Monoclinic crystal structure of α − RuCl 3 and the zigzag antiferromagnetic ground state , 2015, 1509.02670.

[49]  Yong Baek Kim,et al.  Magnetic field induced quantum phases in a tensor network study of Kitaev magnets , 2019, Nature Communications.

[50]  J. van den Brink,et al.  Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3 , 2016, Scientific Reports.

[51]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[52]  Yogesh Singh,et al.  Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. , 2011, Physical review letters.

[53]  S. Trebst,et al.  Field stability of Majorana spin liquids in antiferromagnetic Kitaev models , 2020, 2004.00640.

[54]  N. Perkins,et al.  Phase diagram and quantum order by disorder in the Kitaev K1- K2 honeycomb magnet , 2015, 1506.09185.

[55]  P. Stavropoulos,et al.  Microscopic Mechanism for a Higher-Spin Kitaev Model. , 2019, Physical review letters.

[56]  Roger G. Melko,et al.  Kernel methods for interpretable machine learning of order parameters , 2017, 1704.05848.

[57]  H. Kee,et al.  Generic spin model for the honeycomb iridates beyond the Kitaev limit. , 2013, Physical review letters.

[58]  S. Okamoto,et al.  Dynamical and thermal magnetic properties of the Kitaev spin liquid candidate α-RuCl3 , 2019, npj Quantum Materials.

[59]  M. E. Zhitomirsky,et al.  Octupolar ordering of classical kagome antiferromagnets in two and three dimensions , 2008, 0805.0676.

[60]  R. J. Baxter,et al.  Colorings of a Hexagonal Lattice , 1970 .

[61]  S. Nagler,et al.  Field-induced intermediate phase in $\alpha$-RuCl$_3$: Non-coplanar order, phase diagram, and proximate spin liquid , 2018, 1807.06192.

[62]  Weihong Zheng,et al.  Excitation spectra of the spin- 1 2 triangular-lattice Heisenberg antiferromagnet , 2006, cond-mat/0608008.

[63]  F. Y. Wu Dimers on two-dimensional lattices , 2008 .

[64]  H. Kee,et al.  Crystal structure and magnetism in $\alpha$-RuCl3: an ab-initio study , 2015, 1509.04723.

[65]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[66]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[67]  A. Savici,et al.  Excitations in the field-induced quantum spin liquid state of α-RuCl3 , 2017, 1706.07003.

[68]  Kurt Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[69]  M. Vojta,et al.  Heisenberg–Kitaev physics in magnetic fields , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[71]  N. Perkins,et al.  Critical properties of the Kitaev-Heisenberg model. , 2012, Physical review letters.

[72]  Jian-xin Li,et al.  Global phase diagram, possible chiral spin liquid, and topological superconductivity in the triangular Kitaev–Heisenberg model , 2014, 1409.7820.

[73]  Ke Liu,et al.  Identification of emergent constraints and hidden order in frustrated magnets using tensorial kernel methods of machine learning , 2019, Physical Review B.

[74]  M. Marques,et al.  Recent advances and applications of machine learning in solid-state materials science , 2019, npj Computational Materials.

[75]  A. Honecker,et al.  Breakdown of magnons in a strongly spin-orbital coupled magnet , 2017, Nature Communications.

[76]  M. Vojta,et al.  Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for α − RuCl 3 and Na 2 IrO 3 , 2017, 1706.05380.

[77]  A. Banerjee,et al.  Finite field regime for a quantum spin liquid in α−RuCl3 , 2019, Physical Review B.

[78]  G. Jackeli,et al.  A spin–orbital-entangled quantum liquid on a honeycomb lattice , 2018, Nature.

[79]  R. Shankar,et al.  Spin-S Kitaev model: Classical ground states, order from disorder, and exact correlation functions , 2008, 0806.1588.

[80]  R. Moessner,et al.  Dynamics of the Kitaev-Heisenberg Model. , 2017, Physical review letters.

[81]  R. Valentí,et al.  Thermodynamic Perspective on Field-Induced Behavior of α-RuCl_{3}. , 2020, Physical review letters.

[82]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[83]  Zheng Zhu,et al.  Magnetic field induced spin liquids in S=1 Kitaev honeycomb model , 2020, Physical Review Research.

[84]  Erik S. Sørensen,et al.  Theory of the field-revealed Kitaev spin liquid , 2019, Nature Communications.

[85]  L Li,et al.  Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. , 2015, Nature Materials.

[86]  Yi Zhang,et al.  Machine learning in electronic-quantum-matter imaging experiments , 2018, Nature.

[87]  R. Birgeneau,et al.  Correlated states in β-Li2IrO3 driven by applied magnetic fields , 2017, Nature Communications.

[88]  F. Tafti,et al.  Spin Excitations of a Proximate Kitaev Quantum Spin Liquid Realized in Cu2IrO3 , 2019, Physical Review X.

[89]  L. Jaubert,et al.  Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange , 2017, 1705.00148.

[90]  T. Smidt,et al.  Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate , 2014, Nature Communications.

[91]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[92]  Yong Baek Kim,et al.  Signatures of Quantum Spin Liquid in Kitaev-like Frustrated Magnets , 2017 .

[93]  Bo Sun,et al.  Inference of hidden structures in complex physical systems by multi-scale clustering , 2015, ArXiv.

[94]  M. Lumsden,et al.  Low-temperature crystal and magnetic structure of α -RuCl 3 , 2016, 1602.08112.

[95]  Chih-Jen Lin,et al.  Training v-Support Vector Classifiers: Theory and Algorithms , 2001, Neural Computation.

[96]  P. W. Kasteleyn Dimer Statistics and Phase Transitions , 1963 .

[97]  T. Devereaux,et al.  Field-induced quantum spin liquid in the Kitaev-Heisenberg model and its relation to α−RuCl3 , 2019, Physical Review B.

[98]  H. Takagi,et al.  Hyperhoneycomb Iridate β-Li2IrO3 as a platform for Kitaev magnetism. , 2014, Physical review letters.

[99]  Ke Liu,et al.  Probing hidden spin order with interpretable machine learning , 2018, Physical Review B.

[100]  P. Stavropoulos,et al.  Field-driven gapless spin liquid in the spin-1 Kitaev honeycomb model , 2020, Physical Review Research.

[101]  H. Kee,et al.  Kitaev magnetism in honeycomb RuCl 3 with intermediate spin-orbit coupling , 2014, 1411.6623.

[102]  Y. Motome,et al.  Thermal Transport in the Kitaev Model. , 2017, Physical review letters.