Fast parallel circuits for the quantum Fourier transform

We give new bounds on the circuit complexity of the quantum Fourier transform (QFT). We give an upper bound of O(log n+log log(1//spl epsiv/)) on the circuit depth for computing an approximation of the QFT with respect to the modulus 2/sup n/ with error bounded by /spl epsiv/. Thus, even for exponentially small error, our circuits have depth O(log n). The best previous depth bound was O(n), even for approximations with constant error. Moreover, our circuits have size O(n log(n//spl epsiv/)). As an application of this depth bound, we show that P. Shor's (1997) factoring algorithm may be based on quantum circuits with depth only O(log n) and polynomial size, in combination with classical polynomial-time pre- and postprocessing. Next, we prove an /spl Omega/(log n) lower bound on the depth complexity of approximations of the QFT with constant error. This implies that the above upper bound is asymptotically tight (for a reasonable range of values of /spl epsiv/). We also give an upper bound of O(n(log n)/sup 2/ log log n) on the circuit size of the exact QFT modulo 2/sup n/, for which the best previous bound was O(n/sup 2/). Finally, based on our circuits for the QFT with power-of-2 moduli, we show that the QFT with respect to an arbitrary modulus m can be approximated with accuracy /spl epsiv/ with circuits of depth O((log log m)(log log 1//spl epsiv/)) and size polynomial in log m+log(1//spl epsiv/).

[1]  Wieb Bosma,et al.  Algorithmic Number Theory , 2000, Lecture Notes in Computer Science.

[2]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[3]  Martin Nilsson,et al.  Parallel Quantum Computation and Quantum Codes , 2001, SIAM J. Comput..

[4]  M. Mosca Quantum Searching Counting and Amplitude Ampli cation by Eigenvector Analysis , 1998 .

[5]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[6]  J. Ward,et al.  Book Review: Proceedings of the Third International Conference on Spectral and High Order Methods@@@Book Review: An introduction to computational geometry for curves and surfaces@@@Book Review: The mathematics of surfaces@@@Book Review: Algorithmic number theory, Volume I: Efficient algorithms , 1998 .

[7]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[8]  Sean Hallgren,et al.  Quantum Fourier sampling simplified , 1999, STOC '99.

[9]  Yuri Petrovich Ofman,et al.  On the Algorithmic Complexity of Discrete Functions , 1962 .

[10]  Dima Grigoriev,et al.  Testing shift-equivalence of polynomials using quantum machines , 1996, ISSAC '96.

[11]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[12]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[13]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[14]  Umesh V. Vazirani,et al.  Quantum Algorithms , 2001, LATIN.

[15]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[16]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[17]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[18]  C. Fuchs Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.

[19]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[20]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[21]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[22]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[23]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[24]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[25]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[26]  H. James Hoover,et al.  Limits to parallel computation , 1995 .

[27]  James W. Cooley,et al.  The re-discovery of the fast Fourier transform algorithm , 1987 .

[28]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1984, IEEE ASSP Magazine.

[29]  D. Rockmore,et al.  Generalized FFT's- A survey of some recent results , 1996, Groups and Computation.

[30]  John H. Reif Logarithmic Depth Circuits for Algebraic Functions , 1986, SIAM J. Comput..

[31]  Dorit Aharonov,et al.  Polynomial simulations of decohered quantum computers , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[32]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  William Hugh Murray,et al.  Modern Cryptography , 1995, Information Security Journal.

[34]  B. Litow,et al.  NC1 Division , 2000 .

[35]  D. Du,et al.  Theory of Computational Complexity , 2000 .

[36]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1984, SIAM J. Comput..

[37]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[38]  D. Du,et al.  Theory of Computational Complexity: Du/Theory , 2000 .

[39]  J. Preskill Fault-tolerant quantum computation , 1997, quant-ph/9712048.

[40]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  Oded Goldreich,et al.  Modern Cryptography, Probabilistic Proofs and Pseudorandomness , 1998, Algorithms and Combinatorics.