MIXER: A Principled Framework for Multimodal, Multiway Data Association

A fundamental problem in robotic perception is matching identical objects or data, with applications such as loop closure detection, place recognition, object tracking, and map fusion. While the problem becomes considerably more challenging when matching should be done jointly across multiple, multimodal sets of data, the robustness and accuracy of matching in the presence of noise and outliers can be greatly improved in this setting. At present, multimodal techniques do not leverage multiway information, and multiway techniques do not incorporate different modalities, leading to inferior results. In contrast, we present a principled mixed-integer quadratic framework to address this issue. We use a novel continuous relaxation in a projected gradient descent algorithm that guarantees feasible solutions of the integer program are obtained efficiently. We demonstrate experimentally that correspondences obtained from our approach are more stable to noise and errors than state-of-the-art techniques. Tested on a robotics dataset, our algorithm resulted in a 35% increase in F1 score when compared to the best alternative.

[1]  A. N. Elshafei,et al.  An exact branch‐and‐bound procedure for the quadratic‐assignment problem , 1979 .

[2]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[3]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[4]  Calin Belta,et al.  Distributed and consistent multi-image feature matching via QuickMatch , 2019, Int. J. Robotics Res..

[5]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[6]  Hongyuan Zha,et al.  Multi-Graph Matching via Affinity Optimization with Graduated Consistency Regularization , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[8]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[9]  Stefan Roth,et al.  MOT16: A Benchmark for Multi-Object Tracking , 2016, ArXiv.

[10]  Nan Hu,et al.  Distributable Consistent Multi-object Matching , 2016, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[11]  Marc Pollefeys,et al.  Disambiguating visual relations using loop constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Yinqiang Zheng,et al.  Beyond Intra-modality: A Survey of Heterogeneous Person Re-identification , 2019 .

[13]  Ziyan Wu,et al.  A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[16]  Jonathan P. How,et al.  CLEAR: A Consistent Lifting, Embedding, and Alignment Rectification Algorithm for Multiview Data Association , 2019, IEEE Transactions on Robotics.

[17]  Kostas Daniilidis,et al.  A Distributed Optimization Approach to Consistent Multiway Matching , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[18]  Xiaowei Zhou,et al.  Fast Multi-image Matching via Density-Based Clustering , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[19]  Christian Theobalt,et al.  A Convex Relaxation for Multi-Graph Matching , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Michael Möller,et al.  DS*: Tighter Lifting-Free Convex Relaxations for Quadratic Matching Problems , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Federico Castanedo,et al.  A Review of Data Fusion Techniques , 2013, TheScientificWorldJournal.

[22]  Eranda C Ela,et al.  Assignment Problems , 1964, Comput. J..

[23]  D. Bertsekas The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .

[24]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[25]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[26]  Wenhan Luo,et al.  Multiple object tracking: A literature review , 2014, Artif. Intell..

[27]  Peter C. Cheeseman,et al.  In Defense of Probability , 1985, IJCAI.

[28]  Peter I. Corke,et al.  Visual Place Recognition: A Survey , 2016, IEEE Transactions on Robotics.

[29]  Johan Thunberg,et al.  Synchronisation of Partial Multi-Matchings via Non-negative Factorisations , 2018, Pattern Recognit..

[30]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .

[31]  Yanning Zhang,et al.  Tensor Power Iteration for Multi-graph Matching , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Hugh F. Durrant-Whyte,et al.  Sensor Models and Multisensor Integration , 1988, Int. J. Robotics Res..

[33]  Xiaowei Zhou,et al.  Multi-image Matching via Fast Alternating Minimization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[34]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[35]  Carsten Rother,et al.  A Study of Lagrangean Decompositions and Dual Ascent Solvers for Graph Matching , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[37]  Robin R. Murphy,et al.  Dempster-Shafer theory for sensor fusion in autonomous mobile robots , 1998, IEEE Trans. Robotics Autom..

[38]  Vikas Singh,et al.  Solving the multi-way matching problem by permutation synchronization , 2013, NIPS.

[39]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[40]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[41]  Ronen Basri,et al.  Tight relaxation of quadratic matching , 2015, SGP '15.

[42]  Yu Tian,et al.  Joint Optimization for Consistent Multiple Graph Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[43]  Leonidas J. Guibas,et al.  An Optimization Approach to Improving Collections of Shape Maps , 2011, Comput. Graph. Forum.

[44]  Thomas B. Schön,et al.  Learning to close loops from range data , 2011, Int. J. Robotics Res..

[45]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[46]  Kari Sentz,et al.  Combination of Evidence in Dempster-Shafer Theory , 2002 .

[47]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[48]  Ning Xu,et al.  Learn to Combine Modalities in Multimodal Deep Learning , 2018, ArXiv.

[49]  Gui-Song Xia,et al.  Globally consistent correspondence of multiple feature sets using proximal Gauss-Seidel relaxation , 2016, Pattern Recognit..

[50]  Yunzhou Zhang,et al.  Semantic loop closure detection based on graph matching in multi-objects scenes , 2021, J. Vis. Commun. Image Represent..

[51]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[52]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Alexandre d'Aspremont,et al.  Convex Relaxations for Permutation Problems , 2013, SIAM J. Matrix Anal. Appl..

[54]  Leonidas J. Guibas,et al.  Near-Optimal Joint Object Matching via Convex Relaxation , 2014, ICML.

[55]  M. Bazaraa,et al.  A branch-and-bound-based heuristic for solving the quadratic assignment problem , 1983 .

[56]  Xiaowei Zhou,et al.  Distributed consistent data association via permutation synchronization , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[57]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..