Author ' s personal copy Theories and models for 1 / f b noise in human movement science

Human motor behavior is often characterized by long-range, slowly decaying serial correlations or 1/f noise. Despite its prevalence, the role of the 1/f phenomenon in human movement research has been rather modest and unclear. The goal of this paper is to outline a research agenda in which the study of 1/f noise can contribute to scientific progress. In the first section of this article we discuss two popular perspectives on 1/f noise: the nomothetic perspective that seeks general explanations, and the mechanistic perspective that seeks domain-specific models. We believe that if 1/f noise is to have an impact on the field of movement science, researchers should develop and test domain-specific mechanistic models of human motor behavior. In the second section we illustrate our claim by showing how a mechanistic model of 1/f noise can be successfully integrated with currently established models for rhythmic self-paced, synchronized, and bimanual tapping. This model synthesis results in a unified account of the observed longrange serial correlations across a range of different tasks. Ó 2009 Published by Elsevier B.V.

[1]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[2]  Christopher T. Kello,et al.  The Pervasiveness of 1/f Scaling in Speech Reflects the Metastable Basis of Cognition , 2008, Cogn. Sci..

[3]  K. Torre,et al.  Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling. , 2008, Acta psychologica.

[4]  Didier Delignières,et al.  Unraveling the finding of 1/fβ noise in self-paced and synchronized tapping: a unifying mechanistic model , 2008, Biological Cybernetics.

[5]  K. Torre,et al.  Fractal models for event-based and dynamical timers. , 2008, Acta psychologica.

[6]  Christopher T. Kello,et al.  The emergent coordination of cognitive function. , 2007, Journal of experimental psychology. General.

[7]  D. Gilden,et al.  Response Variability in Attention-Deficit Disorders , 2007, Psychological science.

[8]  Jeffrey M. Hausdorff Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. , 2007, Human movement science.

[9]  K. Torre,et al.  1/fβ fluctuations in bimanual coordination: an additional challenge for modeling , 2007, Experimental Brain Research.

[10]  K. Newell,et al.  Speed influences on the scaling behavior of gait cycle fluctuations during treadmill running. , 2007, Human movement science.

[11]  Delignières Didier,et al.  Testing for the Presence of 1/f Noise in Continuation Tapping Data , 2022 .

[12]  K. Newell,et al.  Long range correlations in the stride interval of running. , 2006, Gait & posture.

[13]  R. Ratcliff,et al.  1/f noise in human cognition: Is it ubiquitous, and what does it mean? , 2006, Psychonomic bulletin & review.

[14]  Peter Grünwald,et al.  Accumulative prediction error and the selection of time series models , 2006 .

[15]  B. Repp Sensorimotor synchronization: A review of the tapping literature , 2005, Psychonomic bulletin & review.

[16]  Peter J Beek,et al.  Unraveling interlimb interactions underlying bimanual coordination. , 2005, Journal of neurophysiology.

[17]  Thomas L. Thornton,et al.  Provenance of correlations in psychological data , 2005, Psychonomic bulletin & review.

[18]  Bruce J. West,et al.  A Multifractal Dynamical Model of Human Gait , 2005, cond-mat/0504464.

[19]  Dominique Guégan,et al.  How can we Define the Concept of Long Memory? An Econometric Survey , 2005 .

[20]  R. Ratcliff,et al.  Human cognition and a pile of sand: a discussion on serial correlations and self-organized criticality. , 2005, Journal of experimental psychology. General.

[21]  Andreas Daffertshofer,et al.  Multiple time scales in serial production of force: a tutorial on power spectral analysis of motor variability. , 2004, Human movement science.

[22]  Didier Delignières,et al.  The fractal dynamics of self-esteem and physical self. , 2004, Nonlinear dynamics, psychology, and life sciences.

[23]  K. Torre,et al.  Time intervals production in tapping and oscillatory motion. , 2004, Human movement science.

[24]  R. Ratcliff,et al.  Estimation and interpretation of 1/fα noise in human cognition , 2004 .

[25]  Aaron Smith,et al.  Level Shifts and the Illusion of Long Memory in Economic Time Series , 2004 .

[26]  Daniel Durstewitz,et al.  Neural representation of interval time , 2004, Neuroreport.

[27]  J. J. Collins,et al.  Hard-wired central pattern generators for quadrupedal locomotion , 1994, Biological Cybernetics.

[28]  H. Haken,et al.  A stochastic theory of phase transitions in human hand movement , 1986, Biological Cybernetics.

[29]  G. V. van Orden,et al.  Self-organization of cognitive performance. , 2003, Journal of experimental psychology. General.

[30]  Bruce J. West,et al.  Nonlinear dynamical model of human gait. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Mingzhou Ding,et al.  Processes with long-range correlations : theory and applications , 2003 .

[32]  William R. Uttal,et al.  Psychomythics: Sources of Artifacts and Misconceptions in Scientific Psychology , 2003 .

[33]  Guy Madison,et al.  Fractal modeling of human isochronous serial interval production , 2003, Biological Cybernetics.

[34]  J. Beran,et al.  Semiparametric Modeling of Stochastic and Deterministic Trends and Fractional Stationarity , 2003 .

[35]  Peter Hänggi,et al.  Long-range memory and non-Markov statistical effects in human sensorimotor coordination , 2002 .

[36]  Aniruddh D. Patel,et al.  Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions. , 2002, Human movement science.

[37]  Richard B Ivry,et al.  Temporal Control and Coordination: The Multiple Timer Model , 2002, Brain and Cognition.

[38]  Dirk Vorberg,et al.  Linear phase-correction in synchronization: predictions, parameter estimation, and simulations , 2002 .

[39]  Andras Semjen,et al.  On the Timing Basis of Bimanual Coordination in Discrete and Continuous Tasks , 2002, Brain and Cognition.

[40]  A. Semjen,et al.  Timing goals in bimanual coordination , 2002, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[41]  G. Schöner Timing, Clocks, and Dynamical Systems , 2002, Brain and Cognition.

[42]  Mingzhou Ding,et al.  Statistical Analysis of Timing Errors , 2002, Brain and Cognition.

[43]  R. Ivry,et al.  Improved temporal stability in multieffector movements. , 2002 .

[44]  Lawrence M. Ward,et al.  Dynamical Cognitive Science , 2001 .

[45]  M. Turvey,et al.  Deterministic variability and stability in detuned bimanual rhythmic coordination. , 2001, Human movement science.

[46]  J. Davidsen,et al.  Comment on "1/f noise in the Bak-Sneppen model". , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  T. Gisiger Scale invariance in biology: coincidence or footprint of a universal mechanism? , 2001, Biological reviews of the Cambridge Philosophical Society.

[48]  G. Madison,et al.  Variability in isochronous tapping: higher order dependencies as a function of intertap interval. , 2001, Journal of experimental psychology. Human perception and performance.

[49]  R B Ivry,et al.  The coupled oscillator model of between-hand coordination in alternate-hand tapping: a reappraisal. , 2001, Journal of experimental psychology. Human perception and performance.

[50]  Jeffrey M. Hausdorff,et al.  A Stochastic Model of Human Gait Dynamics , 2001, cond-mat/0103119.

[51]  Mingzhou Ding,et al.  Origins of Timing Errors in Human Sensorimotor Coordination , 2001, Journal of motor behavior.

[52]  Gordon D. A. Brown,et al.  Scale invariance in the retrieval of retrospective and prospective memories , 2001, Psychonomic bulletin & review.

[53]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[54]  P. Bak,et al.  Adaptive learning by extremal dynamics and negative feedback. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  D. Gilden Cognitive emissions of 1/f noise. , 2001, Psychological review.

[56]  Christian Gourieroux,et al.  Memory and infrequent breaks , 2001 .

[57]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[58]  Schuster,et al.  1/f(alpha) noise from self-organized critical models with uniform driving , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  A Semjen,et al.  Timing precision in continuation and synchronization tapping , 2000, Psychological research.

[60]  Sasuke Miyazima,et al.  Fluctuation of biological rhythm in finger tapping , 2000 .

[61]  D. Percival,et al.  Physiological time series: distinguishing fractal noises from motions , 2000, Pflügers Archiv.

[62]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[63]  H Pashler,et al.  How persuasive is a good fit? A comment on theory testing. , 2000, Psychological review.

[64]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[65]  P. Bak,et al.  Learning from mistakes , 1997, Neuroscience.

[66]  Bradley S. Peterson,et al.  The temporal dynamics of tics in Gilles de la Tourette syndrome , 1998, Biological Psychiatry.

[67]  D. Turcotte,et al.  Forest fires: An example of self-organized critical behavior , 1998, Science.

[68]  Andr'e M. C. Souza,et al.  Criticality in a simple model for brain functioning , 1998 .

[69]  Dirk Vorberg,et al.  Getting synchronized with the metronome: Comparisons between phase and period correction , 1998 .

[70]  Ivanov PCh,et al.  Stochastic feedback and the regulation of biological rhythms. , 1997, Europhysics letters.

[71]  Yanqing Chen,et al.  Long Memory Processes ( 1 / f α Type) in Human Coordination , 1997 .

[72]  E. Novikov,et al.  Scale-similar activity in the brain , 1997 .

[73]  David L. Gilden,et al.  Fluctuations in the Time Required for Elementary Decisions , 1997 .

[74]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[75]  Jeff Pressing,et al.  Spectral properties of human cognition and skill , 1997, Biological Cybernetics.

[76]  R. Ivry The representation of temporal information in perception and motor control , 1996, Current Opinion in Neurobiology.

[77]  Jeffrey M. Hausdorff,et al.  Multiscaled randomness: A possible source of 1/f noise in biology. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[79]  L. Liebovitch,et al.  "Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations". , 1996, Journal of applied physiology.

[80]  R. Ivry,et al.  When two hands are better than one: reduced timing variability during bimanual movements. , 1996, Journal of experimental psychology. Human perception and performance.

[81]  Paczuski,et al.  Avalanche dynamics in evolution, growth, and depinning models. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[82]  Alan M. Wing,et al.  Modeling variability and dependence in timing , 1996 .

[83]  A Gottschalk,et al.  Evidence of chaotic mood variation in bipolar disorder. , 1995, Archives of general psychiatry.

[84]  Norimasa Yamada,et al.  Nature of variability in rhythmical movement , 1995 .

[85]  David L. Gilden,et al.  Streaks in skilled performance , 1995, Psychonomic bulletin & review.

[86]  Alstrom,et al.  Versatility and adaptive performance. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[87]  D L Gilden,et al.  1/f noise in human cognition. , 1995, Science.

[88]  D. Gilden,et al.  On the Nature of Streaks in Signal Detection , 1995, Cognitive Psychology.

[89]  Usher,et al.  Dynamic pattern formation leads to 1/f noise in neural populations. , 1995, Physical review letters.

[90]  Jeffrey M. Hausdorff,et al.  Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. , 1995, Journal of applied physiology.

[91]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[92]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[93]  武者 利光,et al.  Noise in physical systems and 1/f fluctuations , 1992 .

[94]  Jensen,et al.  1/f noise, distribution of lifetimes, and a pile of sand. , 1989, Physical review. B, Condensed matter.

[95]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[96]  J A Kelso,et al.  Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. , 1987, Journal of experimental psychology. Human perception and performance.

[97]  H. Håkan A theoretical model of phase transitions in human hand movements , 1985 .

[98]  J. Hosking Modeling persistence in hydrological time series using fractional differencing , 1984 .

[99]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[100]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[101]  P. Robinson,et al.  Statistical inference for a random coefficient autoregressive model , 1978 .

[102]  Dietrich Wolf,et al.  Noise in physical systems , 1978 .

[103]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[104]  A. Kristofferson,et al.  The timing of interresponse intervals , 1973 .

[105]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .