Green Manufacturing and Sustainable Manufacturing Partnership Title Towards Energy and Resource Efficient Manufacturing : A Processes and Systems Approach Permalink

This paper aims to provide a systematic overview of the state of the art in energy and resource efficie increasing methods and techniques in the domain of discrete part manufacturing, with attention for effectiveness of the available options. For this purpose a structured approach, distinguishing diffe system scale levels, is applied: starting from a unit process focus, respectively the multi-machine, fact multi-facility and supply chain levels are covered. Determined by the research contributions reporte literature, the de facto focus of the paper is mainly on energy related aspects of manufacturing. Signifi opportunities for systematic efficiency improving measures are identified and summarized in this a 2012 C

[1]  Peter Groche,et al.  Environmentally benign tribo-systems for metal forming , 2010 .

[2]  André Zein,et al.  Procedures and tools for metering energy consumption of machine tools , 2011 .

[3]  Yong Tae Kang,et al.  Environmentally friendly energy system models using material circulation and energy cascade—the optimization work , 1999 .

[4]  C. E. Bates,et al.  Decomposition of resin binders and the relationship between the gases formed and the casting surface quality , 1975 .

[5]  Wim Dewulf,et al.  Improvement Potential for Energy Consumption in Discrete Part Production Machines , 2007 .

[6]  Bernd Page,et al.  Combining discrete event simulation and material flow analysis in a component-based approach to industrial environmental protection , 2006, Environ. Model. Softw..

[7]  Corinne Reich-Weiser,et al.  A discussion of greenhouse gas emission tradeoffs and water scarcity within the supply chain , 2009 .

[8]  Janet K. Allen,et al.  Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part I: Tracing Flows , 2004 .

[9]  A. E. Tekkaya,et al.  The Effect of Extrusion Ratio and Material Flow on the Mechanical Properties of Aluminum Profiles Solid State Recycled from 6060 Aluminum Alloy Chips , 2011 .

[10]  Zach G. Zacharia,et al.  DEFINING SUPPLY CHAIN MANAGEMENT , 2001 .

[11]  Peter Krajnik,et al.  Transitioning to sustainable production – Part I: application on machining technologies , 2010 .

[12]  T. Gutowski,et al.  Environmentally benign manufacturing: Observations from Japan, Europe and the United States , 2005 .

[13]  Nicolas Perry,et al.  Rapid prototyping: energy and environment in the spotlight , 2006 .

[14]  Reimund Neugebauer,et al.  Heuristic-Based Evaluation of Energy Flows in Press Hardening Process Chains , 2011 .

[15]  G. E. Mosher Calculating emission factors for pouring, cooling and shakeout , 1994 .

[16]  J. Larjola,et al.  Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC) , 1995 .

[17]  B. Hannon,et al.  The structure of ecosystems. , 1973, Journal of theoretical biology.

[18]  Krassimir Dotchev,et al.  Recycling of polyamide 12 based powders in the laser sintering process , 2009 .

[19]  Christoph Herrmann,et al.  Energy oriented simulation of manufacturing systems - Concept and application , 2011 .

[20]  Elsa Henriques,et al.  A Life Cycle Engineering model for technology selection: a case study on plastic injection moulds for low production volumes , 2009 .

[21]  Qinghua Zhu,et al.  Industrial Symbiosis in China: A Case Study of the Guitang Group , 2007 .

[22]  Christoph Herrmann,et al.  Global manufacturing and the embodied energy of products , 2010 .

[23]  Ted Sirkin,et al.  The cascade chain: A theory and tool for achieving resource sustainability with applications for product design , 1994 .

[24]  Yousef S.H. Najjar,et al.  Recovery and utilization of waste heat , 1993 .

[25]  Nasrudin Abd Rahim,et al.  A review on compressed-air energy use and energy savings , 2010 .

[26]  Erich J. Schwarz,et al.  Implementing nature's lesson: The industrial recycling network enhancing regional development , 1997 .

[27]  Ibrahim Dincer,et al.  Exergy: Energy, Environment and Sustainable Development , 2007 .

[28]  Stephanie K. Dalquist,et al.  LIFE CYCLE ANALYSIS OF CONVENTIONAL MANUFACTURING TECHNIQUES: DIE CASTING , 2004 .

[29]  Alexander Verl,et al.  A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing , 2009 .

[30]  Marian Chertow,et al.  INDUSTRIAL SYMBIOSIS: Literature and Taxonomy , 2000 .

[31]  A. Bejan Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture , 2002 .

[32]  Terry J. Hendricks,et al.  Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery , 2006 .

[33]  M. Schikorra,et al.  Hot profile extrusion of AA-6060 aluminum chips , 2009 .

[34]  Arpad Horvath,et al.  Green Manufacturing and Sustainable Manufacturing Partnership Title Environmental Analysis of Milling Machine Tool Use in Various Manufacturing Environments , 2022 .

[35]  J. D. Risi Energy savings with compressed air , 1995 .

[36]  David Dornfeld,et al.  Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use , 2011 .

[37]  Makoto Fujishima,et al.  A study on energy efficiency improvement for machine tools , 2011 .

[38]  Steven J Skerlos,et al.  Comparison of life cycle emissions and energy consumption for environmentally adapted metalworking fluid systems. , 2008, Environmental science & technology.

[39]  P. Pearson,et al.  Input-output simulations of energy, environment, economy interactions in the UK , 1995 .

[40]  Jan C. Aurich,et al.  High-performance dry grinding using a grinding wheel with a defined grain pattern , 2008 .

[41]  L. Sokka,et al.  Quantifying the total environmental impacts of an industrial symbiosis - a comparison of process-, hybrid and input-output life cycle assessment. , 2010, Environmental science & technology.

[42]  R. Costanza,et al.  Embodied energy and economic valuation. , 1980, Science.

[43]  H.-M. Groscurth,et al.  Thermodynamic limits to energy optimization , 1989 .

[44]  T. J. Kotas,et al.  The Exergy Method of Thermal Plant Analysis , 2012 .

[45]  Christoph Herrmann,et al.  Process chain simulation to foster energy efficiency in manufacturing , 2009 .

[46]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[47]  R. V. Berkel,et al.  Quantifying Sustainability Benefits of Industrial Symbioses , 2010 .

[48]  D. V. Beers,et al.  Industrial Symbiosis in the Australian Minerals Industry: The Cases of Kwinana and Gladstone , 2007 .

[49]  Timothy G. Gutowski,et al.  An Environmental Analysis of Machining , 2004 .

[50]  M. Chertow “Uncovering” Industrial Symbiosis , 2007 .

[51]  Michael Zwicky Hauschild,et al.  From Life Cycle Assessment to Sustainable Production: Status and Perspectives , 2005 .

[52]  M. Chertow,et al.  Quantifying economic and environmental benefits of co-located firms. , 2005, Environmental science & technology.

[53]  Faye Duchin,et al.  Input-Output Economics and Material Flows , 2009 .

[54]  J. E. Ahern,et al.  The exergy method of energy systems analysis , 1980 .

[55]  P. Sheng,et al.  An analytical approach for determining the environmental impact of machining processes , 1995 .

[56]  S. G. Deshmukh,et al.  Supplier selection using fuzzy association rules mining approach , 2007 .

[57]  Steven J. Skerlos,et al.  Environmental aspects of laser-based and conventional tool and die manufacturing , 2007 .

[58]  Andrew Jarvis,et al.  Strategies for Minimum Energy Operation for Precision Machining , 2009 .

[59]  Sami Kara,et al.  Unit process energy consumption models for material removal processes , 2011 .

[60]  Joost Duflou,et al.  Energy related environmental impact reduction opportunities in machine design: case study of a laser cutting machine , 2010 .

[61]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[62]  I. Pashby,et al.  A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining , 2004 .

[63]  R. Cox Compressed air : clean energy in a green world , 1996 .

[64]  Paul Xirouchakis,et al.  A System for Resource Efficient Process Planning for Wire EDM , 2011 .

[65]  Introduction and applications of DIN 8580: following the german standard Din 8580 Fertigungsverfahren , 2008 .

[66]  Franck Viguier,et al.  Simulation-based sustainable manufacturing system design , 2010 .

[67]  Stephanie K. Dalquist,et al.  Life Cycle Analysis of Conventional Manufacturing Techniques: Sand Casting , 2004 .

[68]  John W. Sutherland,et al.  A New Shop Scheduling Approach in Support of Sustainable Manufacturing , 2011 .

[69]  Patrick E. Phelan,et al.  Energy conservation in compressed‐air systems , 2002 .

[70]  Wim Dewulf,et al.  Unit process impact assessment for discrete part manufacturing: A state of the art , 2010 .

[71]  Heinz D. Kurz,et al.  'Classical' Roots of Input-Output Analysis: A Short Account of its Long Prehistory , 2000 .

[72]  J C Creyts,et al.  Use of extended exergy analysis to evaluate the environmental performance of machining processes , 1999 .

[73]  Laura Sokka,et al.  Industrial symbiosis contributing to more sustainable energy use – an example from the forest industry in Kymenlaakso, Finland , 2011 .

[74]  Jumyung Um,et al.  Context-Aware Analysis Approach to Enhance Industrial Smart Metering , 2011 .

[75]  Matthias Holweg,et al.  The genealogy of lean production , 2007 .

[76]  Ana Reis,et al.  Impact of Laser-Based Technologies in the Energy-Consumption of Metal Cutters: Comparison between Commercially Available Systems , 2011 .

[77]  Peter Krajnik,et al.  Transitioning to sustainable production – part II: evaluation of sustainable machining technologies , 2010 .

[78]  Jacqueline M. Bloemhof,et al.  A Methodology for Assessing Eco-Efficiency in Logistics Networks , 2007, Eur. J. Oper. Res..

[79]  S. Melkote,et al.  An investigation of graphite nanoplatelets as lubricant in grinding , 2009 .

[80]  Günther Seliger,et al.  Life cycle management of production facilities using semantic web technologies , 2010 .

[81]  Günther Seliger,et al.  Methodology for planning and operating energy-efficient production systems , 2011 .

[82]  Tina Dettmer,et al.  Coolants made of native ester - technical, ecological and cost assessment from a life cycle perspective , 2007 .

[83]  P. Sheng,et al.  Multi-Objective Process Planning in Environmentally Conscious Manufacturing: A Feature-Based Approach , 1995 .

[84]  Paul Xirouchakis,et al.  Evaluating the use phase energy requirements of a machine tool system , 2011 .

[85]  João Fernando Gomes de Oliveira,et al.  Development of Environmentally Friendly Fluid for CBN Grinding , 2006 .

[86]  Wim Dewulf,et al.  Methodology for systematic analysis and improvement of manufacturing unit process life cycle inventory (UPLCI) Part 2: Case Studies , 2012 .

[87]  Morris A. Cohen,et al.  GLOBAL SUPPLY CHAINS: RESEARCH AND APPLICATIONS , 2009 .

[88]  C. N. Hewitt,et al.  The effect of trade between China and the UK on national and global carbon dioxide emissions , 2008 .

[89]  Jan Szargut,et al.  Cumulative exergy losses associated with the production of lead metal , 1990 .

[90]  Jefferson de Oliveira Gomes,et al.  Saving Potential of Water for Foundry Sand Using Treated Coolant Water , 2011 .

[91]  Beno Sternlicht,et al.  Waste energy recovery: An excellent investment opportunity , 1982 .

[92]  J. Breuil,et al.  Input-Output Analysis and Pollutant Emissions in France , 1992 .

[93]  Jeffrey B Dahmus,et al.  Thermodynamic analysis of resources used in manufacturing processes. , 2009, Environmental science & technology.

[94]  Majda Bastič,et al.  Incorporation of reverse logistics model into in-plant recycling process: A case of aluminium industry , 2006 .

[95]  R Quinkertz,et al.  A scenario to optimise the energy demand of aluminium production depending on the recycling quota , 2001 .

[96]  T. Brockhoff,et al.  Grind-Hardening: A Comprehensive View , 1999 .

[97]  Jan van Dalen,et al.  Input-output analysis of material flows with application to iron, steel and zinc , 1997 .

[98]  Peter Radgen,et al.  Energy system analysis is fertilizer complex – pinch analysis vs. Exergy analysis† , 1996 .

[99]  Jean-Pierre Fleurial,et al.  Thermoelectric power generation materials: Technology and application opportunities , 2009 .

[100]  Shahin Rahimifard,et al.  Minimising Embodied Product Energy to support energy efficient manufacturing , 2010 .