A spring model for suspended particles in dissipative particle dynamics

This paper is concerned with the use of oscillating particles instead of the usual frozen particles to model a suspended particle in the dissipative particle dynamics (DPD) method. A suspended particle is represented by a set of basic DPD particles connected to reference sites by linear springs of very large stiffness. The reference sites, collectively modeling a rigid body, move as a rigid body motion calculated through their Newton-Euler equations, using data from the previous time step, while the velocities of their associated DPD particles are found by solving the DPD equations at the current time step. In this way, a specified Boltzmann temperature (specific kinetic energy of the particles) can be maintained throughout the computational domain, including the region occupied by the suspended particles. This parameter can also be used to adjust the size of the suspended and solvent particles, which in turn affect the strength of the shear-thinning behavior and the effective maximal packing fraction. Fu...

[1]  A. Kelly,et al.  Recursive packing of dense particle mixtures , 2002 .

[2]  A. B. Metzner Rheology of Suspensions in Polymeric Liquids , 1985 .

[3]  Jack F. Douglas,et al.  Model for the Viscosity of Particle Dispersions , 1999 .

[4]  Mohamed Laradji,et al.  Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. , 2007, The Journal of chemical physics.

[5]  Nikolaus A. Adams,et al.  Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics , 2012 .

[6]  J. R. Abbott,et al.  A constitutive equation for concentrated suspensions that accounts for shear‐induced particle migration , 1992 .

[7]  Wook Ryol Hwang,et al.  Direct simulation of particle suspensions in sliding bi-periodic frames , 2004 .

[8]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[9]  Venkat Ganesan,et al.  A coarse-grained explicit solvent simulation of rheology of colloidal suspensions. , 2005, The Journal of chemical physics.

[10]  H. Hoefsloot,et al.  Poiseuille flow to measure the viscosity of particle model fluids. , 2005, The Journal of chemical physics.

[11]  George Em Karniadakis,et al.  Single-particle hydrodynamics in DPD: A new formulation , 2008 .

[12]  Peter V. Coveney,et al.  Using Dissipative Particle Dynamics to Model Binary Immiscible Fluids , 1997 .

[13]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[14]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[15]  Nhan Phan-Thien,et al.  Understanding Viscoelasticity: An Introduction to Rheology , 2012 .

[16]  M Scott Shell,et al.  Multiscale modeling with smoothed dissipative particle dynamics. , 2013, The Journal of chemical physics.

[17]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[18]  Hydrodynamic particle migration in a concentrated suspension undergoing flow between rotating eccentric cylinders , 1995 .

[19]  Nicos Martys,et al.  Study of a dissipative particle dynamics based approach for modeling suspensions , 2005 .

[20]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[21]  Boo Cheong Khoo,et al.  Numerical investigations on the compressibility of a DPD fluid , 2013, J. Comput. Phys..

[22]  Teng Yong Ng,et al.  Simulating flow of DNA suspension using dissipative particle dynamics , 2006 .

[23]  Jun Yang,et al.  A smooth dissipative particle dynamics method for domains with arbitrary-geometry solid boundaries , 2014, J. Comput. Phys..

[24]  George Em Karniadakis,et al.  Rheology, microstructure and migration in brownian colloidal suspensions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[25]  Nhan Phan-Thien,et al.  Differential multiphase models for polydispersed suspensions and particulate solids , 1997 .

[26]  N. Wagner,et al.  Colloidal Suspension Rheology: Frontmatter , 2011 .

[27]  L. Reichl A modern course in statistical physics , 1980 .

[28]  George Em Karniadakis,et al.  A low-dimensional model for the red blood cell. , 2010, Soft matter.

[29]  Peter V. Coveney,et al.  Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics , 1997 .

[30]  Michael Brereton,et al.  A Modern Course in Statistical Physics , 1981 .

[31]  Chwee Teck Lim,et al.  Stretching and relaxation of malaria-infected red blood cells. , 2013, Biophysical journal.

[32]  Patrick B. Warren,et al.  Mesoscopic Simulation of Drops in Gravitational and Shear Fields , 2000 .

[33]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[34]  Nam Mai-Duy,et al.  Dissipative particle dynamics modeling of low Reynolds number incompressible flows , 2013 .

[35]  Xin Bian,et al.  A splitting integration scheme for the SPH simulation of concentrated particle suspensions , 2014, Comput. Phys. Commun..

[36]  M. Whittle,et al.  Dynamic simulations of colloids by core-modified dissipative particle dynamics. , 2010, The Journal of chemical physics.

[37]  S. Edwards,et al.  The computer study of transport processes under extreme conditions , 1972 .

[38]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. H. Ernst,et al.  Static and dynamic properties of dissipative particle dynamics , 1997, cond-mat/9702036.

[40]  J. Brady,et al.  Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation , 2000, Journal of Fluid Mechanics.

[41]  Nhan Phan-Thien,et al.  Flow around spheres by dissipative particle dynamics , 2006 .

[42]  Albert Einstein,et al.  Eine neue Bestimmung der Moleküldimensionen [AdP 19, 289 (1906)] , 2005 .

[43]  John F. Brady,et al.  The Einstein viscosity correction in n dimensions , 1983 .

[44]  J. Koelman,et al.  Dynamic simulations of hard-sphere suspensions under steady shear , 1993 .

[45]  Ilpo Vattulainen,et al.  Reptational dynamics in dissipative particle dynamics simulations of polymer melts. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  D. Quemada,et al.  Rheology of concentrated disperse systems and minimum energy dissipation principle , 1977 .

[48]  A. G. Schlijper,et al.  Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics , 1997 .

[49]  S. C. Tsai,et al.  Effects of particle properties on the rheology of concentrated noncolloidal suspensions , 1992 .

[50]  C. Kruif,et al.  Hard‐sphere Colloidal Dispersions: The Scaling of Rheological Properties with Particle Size, Volume Fraction, and Shear Rate , 1989 .

[51]  M. Laradji,et al.  Nanospheres in phase-separating multicomponent fluids: a three-dimensional dissipative particle dynamics simulation. , 2004, The Journal of chemical physics.

[52]  Yuen,et al.  A Two-Level, Discrete-Particle Approach for Simulating Ordered Colloidal Structures. , 2000, Journal of colloid and interface science.

[53]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[54]  R. D. Groot,et al.  How to impose stick boundary conditions in coarse-grained hydrodynamics of Brownian colloids and semi-flexible fiber rheology. , 2012, The Journal of chemical physics.

[55]  Mikio Yamanoi,et al.  Bridging the gap between microstructure and macroscopic behavior of monodisperse and bimodal colloidal suspensions , 2013 .