Laser induced damage studies of LiNbO 3 using 1030-nm, ultrashort pulses at 10-1000 kHz

R-on-1 laser induced breakdown thresholds are reported for a wide range of lithium niobate crystals at laser parameters relevant for state-of-the-art optical parametric amplifiers pumped with high repetition rate ultrafast Yb-laser sources. The samples included uncoated and anti-reflection coated, blank and periodically poled MgO-doped congruent crystals and were measured at repetition rates between 10 and 1000 kHz, pulse durations of 330 fs and 1 ps, and temperatures between 20 and 170 °C.

[1]  G. D. Boyd,et al.  OPTICALLY‐INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3 , 1966 .

[2]  N. L. Boling,et al.  Importance of Fresnel reflections in laser surface damage of transparent dielectrics , 1972 .

[3]  J. Marburger,et al.  Self-focusing: theory , 1975, International Quantum Electronics Conference, 2005..

[4]  R. Rupp,et al.  Four-wave interaction phenomena contributing to holographic scattering in LiNbO 3 and LiTaO 3 , 1987 .

[5]  Laurent Gallais,et al.  Optimized metrology for laser-damage measurement: application to multiparameter study. , 2003, Applied optics.

[6]  Susumu Kato,et al.  Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation , 2015 .

[7]  Mansoor Sheik-Bahae,et al.  Infrared to ultraviolet measurements of two-photon absorption and n/sub 2/ in wide bandgap solids , 1996 .

[8]  I. A. Kulagin,et al.  The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals , 2003 .

[9]  Valentin Petrov,et al.  High-average-power, 50-fs parametric amplifier front-end at 1.55 μm. , 2015, Optics express.

[10]  Valdas Sirutkaitis,et al.  Laser-induced-damage threshold of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz , 2013, Pacific Rim Laser Damage.

[11]  Q W Song,et al.  Self-defocusing, self-focusing, and speckle in LiNbO(3) and LiNbO(3):Fe crystals. , 1993, Applied optics.

[12]  I. A. Kulagin,et al.  Analysis of third-order nonlinear susceptibilities of quadratic nonlinear optical crystals , 2006 .

[13]  Satoshi Ashihara,et al.  Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control , 2009 .

[14]  M. Carrascosa,et al.  Optical damage inhibition and thresholding effects in lithium niobate above room temperature , 2000 .

[15]  C. Paré,et al.  Self-focusing of Gaussian beams: an alternate derivation. , 1983, Applied optics.

[16]  O. Prochnow,et al.  500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser. , 2015, Optics express.

[17]  O. Gayer,et al.  Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 , 2008 .

[18]  Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz , 2015 .

[19]  F. S. Chen,et al.  Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3 , 1969 .

[20]  Jens Limpert,et al.  High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate. , 2015, Optics letters.

[21]  Martin M. Fejer,et al.  Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals , 2011 .