Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation

Abstract This paper presents a robust motion tracking control methodology for a flexure-based four-bar micro/nano manipulator driven by a piezoelectric actuator. This control methodology is proposed for tracking desired motion trajectories in view of the problems of unknown or uncertain system parameters, non-linearities including the hysteresis effect, and external disturbances in the system. In this paper, equations of the angular stiffness, ‘static’ linear stiffness, and structural resonance of a flexure-hinged mechanism are presented. In addition, a lumped parameter dynamic model is established for the formulation of the proposed control methodology. The convergence of the position tracking error to zero is assured by the approach in the presence of the aforementioned conditions. The stability of the closed-loop system is proven theoretically, and a precise tracking performance in following a desired motion trajectory is demonstrated in the experimental study. One of the most important advantages of this control methodology is that the approach requires only a knowledge of the estimated lumped parameters in the physical realisation. With the capability of motion tracking, the robust motion control methodology is very attractive in realising high-performance flexure-based control applications in the field of micro/nano manipulation.

[1]  Kee S. Moon,et al.  Optimal design of a flexure hinge based XYφ wafer stage , 1997 .

[2]  C.N. Riviere,et al.  Active tremor compensation in microsurgery , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  K.K. Tan,et al.  Computer controlled piezo micromanipulation system for biomedical applications , 2001 .

[4]  S H Chang,et al.  An ultra-precision XYtheta(Z) piezo-micropositioner. I. Design and analysis. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[5]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[6]  Xuemei Sun,et al.  Analysis and control of monolithic piezoelectric nano-actuator , 2001, IEEE Trans. Control. Syst. Technol..

[7]  Chih-Lyang Hwang,et al.  Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control , 2005, IEEE Transactions on Control Systems Technology.

[8]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[9]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[10]  P. Gao,et al.  A new piezodriven precision micropositioning stage utilizing flexure hinges , 1999 .

[11]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[12]  Sabri Cetinkunt,et al.  Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner , 2000 .

[13]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[14]  Chih-Jer Lin,et al.  PRECISE POSITIONING OF PIEZO-ACTUATED STAGES USING HYSTERESIS-OBSERVER BASED CONTROL , 2006 .

[15]  J. M. Paros,et al.  Flexure Pivots to Replace Knife Edge and Ball Bearing , 1965 .

[16]  Lonnie C. Ludeman,et al.  Fundamentals of Digital Signal Processing , 1986 .

[17]  Bijan Shirinzadeh,et al.  A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing , 2005 .

[18]  Dongwoo Song,et al.  Modeling of piezo actuator’s nonlinear and frequency dependent dynamics , 1999 .

[19]  Willem L. De Koning,et al.  State-space analysis and identification for a class of hysteretic systems , 2001, Autom..

[20]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[21]  Y. Somov Modelling physical hysteresis and control of a fine piezo-drive , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[22]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[23]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[24]  Faa-Jeng Lin,et al.  Adaptive tracking control solely using displacement feedback for a piezo-positioning mechanism , 2004 .

[25]  Hwee Choo Liaw,et al.  Special class of positive definite functions for formulating adaptive micro/nano manipulator control , 2006, 9th IEEE International Workshop on Advanced Motion Control, 2006..

[26]  Bijan Shirinzadeh,et al.  Optimum synthesis of planar parallel manipulators based on kinematic isotropy and force balancing , 2004, Robotica.

[27]  Yonghong Tan,et al.  An inner product-based dynamic neural network hysteresis model for piezoceramic actuators , 2005 .

[28]  K. Spanner,et al.  Advances in piezo-nanopositioning technology , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[29]  I-Ming Chen,et al.  Stiffness modeling of flexure parallel mechanism , 2005 .

[30]  Tien-Fu Lu,et al.  A three-DOF compliant micromotion stage with flexure hinges , 2004, Ind. Robot.

[31]  Il Hong Suh,et al.  Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges , 2002, IEEE Trans. Robotics Autom..

[32]  Bijan Shirinzadeh,et al.  Robust motion tracking control of piezoelectric actuation systems , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[33]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[34]  B. Shirinzadeh,et al.  Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint , 2004 .

[35]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[36]  J. Paros How to design flexure hinges , 1965 .

[37]  Bijan Shirinzadeh Laser‐interferometry‐based tracking for dynamic measurements , 1998 .

[38]  Shuo-Hung Chang,et al.  An ultra-precision XY/spl Theta//sub Z/ piezo-micropositioner. II. Experiment and performance , 1999 .

[39]  Bijan Shirinzadeh,et al.  Kinematics and stiffness analyses of a flexure-jointed planar micromanipulation system for a decoupled compliant motion , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[40]  Lining Sun,et al.  Improving positioning accuracy of piezoelectric actuators by feedforward hysteresis compensation based on a new mathematical model , 2005 .

[41]  Kee S. Moon,et al.  Inverse kinematic modeling of a coupled flexure hinge mechanism , 1999 .

[42]  N.V. Thakor,et al.  Adaptive cancelling of physiological tremor for improved precision in microsurgery , 1998, IEEE Transactions on Biomedical Engineering.

[43]  Yonghong Tan,et al.  Modeling hysteresis using hybrid method of continuous transformation and neural networks , 2005 .

[44]  Bijan Shirinzadeh,et al.  The measurement uncertainties in the laser interferometry-based sensing and tracking technique , 2002 .

[45]  Y. Egashira,et al.  Development of nano-surgery system for cell organelles , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[46]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .