Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices

A hybrid colloidal CdTe nanocrystal/bulk GaAs p-i-n heterostructure is demonstrated to have potential for highly efficient light harvesting photovoltaic devices. An array of rectangular channels is fabricated on the surface of the GaAs heterostructure penetrating through its active layer and subsequently filled with water soluble CdTe nanocrystals emitting in the near infrared. Photogenerated carriers in the highly absorbing colloidal nanocrystals are efficiently transferred by means of nonradiative energy transfer to the patterned heterostructure possessing high carrier mobility and converted to electrical current. A threefold enhancement of both photocurrent and monochromatic power conversion efficiency has been achieved.

[1]  Thomas A. Klar,et al.  Energy transfer with semiconductor nanocrystals , 2009 .

[2]  A. Nozik,et al.  Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultra-High Efficiency Solar Photon Conversion , 2005, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[3]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[4]  Darryl L. Smith,et al.  Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well , 2004, Nature.

[5]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[6]  J. Puls,et al.  Converting Wannier into Frenkel excitons in an inorganic/organic hybrid semiconductor nanostructure. , 2006, Physical review letters.

[7]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[8]  R. T. Harley,et al.  Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices. , 2009, Physical review letters.

[9]  Thomas A. Klar,et al.  Aqueous synthesis of thiol-capped CdTe nanocrystals : State-of-the-art , 2007 .

[10]  Andrey L. Rogach,et al.  Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices , 2008 .

[11]  Ray Murray,et al.  Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non‐Radiative Energy Transfer , 2006 .

[12]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[13]  Pavlos G. Lagoudakis,et al.  Temperature dependence of exciton transfer in hybrid quantum well/nanocrystal heterostructures , 2007 .

[14]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[15]  Yongfang Li,et al.  Bright, multicoloured light-emitting diodes based on quantum dots , 2007 .

[16]  M. Henini,et al.  Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures , 2008 .

[17]  Anupam Madhukar,et al.  Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels. , 2007, Nano letters.

[18]  Pavlos G. Lagoudakis,et al.  Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures , 2007 .

[19]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.