The Bayesian Formulation of EIT: Analysis and Algorithms

We provide a rigorous Bayesian formulation of the EIT problem in an infinite dimensional setting, leading to well-posedness in the Hellinger metric with respect to the data. We focus particularly on the reconstruction of binary fields where the interface between different media is the primary unknown. We consider three different prior models - log-Gaussian, star-shaped and level set. Numerical simulations based on the implementation of MCMC are performed, illustrating the advantages and disadvantages of each type of prior in the reconstruction, in the case where the true conductivity is a binary field, and exhibiting the properties of the resulting posterior distribution.

[1]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[2]  Mark A. Girolami,et al.  Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems , 2015, J. Comput. Phys..

[3]  Marco A. Iglesias,et al.  A Bayesian Level Set Method for Geometric Inverse Problems , 2015, 1504.00313.

[4]  Andrew M. Stuart,et al.  Sequential Monte Carlo methods for Bayesian elliptic inverse problems , 2014, Stat. Comput..

[5]  Omar Ghattas,et al.  An Analysis of Infinite Dimensional Bayesian Inverse Shape Acoustic Scattering and Its Numerical Approximation , 2014, SIAM/ASA J. Uncertain. Quantification.

[6]  Lassi Roininen,et al.  Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography , 2014 .

[7]  Bangti Jin,et al.  An analysis of finite element approximation in electrical impedance tomography , 2013, 1312.1390.

[8]  A. Stuart,et al.  Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.

[9]  Ville Kolehmainen,et al.  Recovering boundary shape and conductivity in electrical impedance tomography , 2013 .

[10]  C. Kenig,et al.  The Calderón problem with partial data on manifolds and applications , 2012, 1211.1054.

[11]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[12]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[13]  Sari Lasanen,et al.  Non-Gaussian statistical inverse problems. Part I: Posterior distributions , 2012 .

[14]  Sari Lasanen,et al.  Posterior convergence for approximated unknowns in non-Gaussian statistical inverse problems , 2011, 1112.0906.

[15]  Daria Schymura,et al.  An upper bound on the volume of the symmetric difference of a body and a congruent copy , 2010, ArXiv.

[16]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[17]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[18]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[19]  M. Bédard Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234 , 2008 .

[20]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[21]  S. Siltanen,et al.  Reconstructions of piecewise constant conductivities by the D-bar method for electrical impedance tomography , 2008 .

[22]  Matti Lassas,et al.  D-Bar Method for Electrical Impedance Tomography with Discontinuous Conductivities , 2007, SIAM J. Appl. Math..

[23]  William R B Lionheart,et al.  Uses and abuses of EIDORS: an extensible software base for EIT , 2006, Physiological measurement.

[24]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[25]  G. Alessandrini,et al.  Stable Determination of an Inclusion by Boundary Measurements , 2004, SIAM J. Math. Anal..

[26]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[27]  E. Somersalo,et al.  Inverse problems with structural prior information , 1999 .

[28]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[29]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[30]  Liliana Borcea,et al.  Network Approximation for Transport Properties of High Contrast Materials , 1998, SIAM J. Appl. Math..

[31]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[32]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[33]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[34]  Erkki Somersalo,et al.  Linear inverse problems for generalised random variables , 1989 .

[35]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[36]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[37]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[38]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[39]  A. Mandelbaum,et al.  Linear estimators and measurable linear transformations on a Hilbert space , 1984 .

[40]  John G. Webster,et al.  An Impedance Camera for Spatially Specific Measurements of the Thorax , 1978, IEEE Transactions on Biomedical Engineering.

[41]  Joel Franklin,et al.  Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .

[42]  R. E. Langer,et al.  An inverse problem in differential equations , 1933 .