The Bayesian Formulation of EIT: Analysis and Algorithms
暂无分享,去创建一个
[1] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[2] Mark A. Girolami,et al. Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems , 2015, J. Comput. Phys..
[3] Marco A. Iglesias,et al. A Bayesian Level Set Method for Geometric Inverse Problems , 2015, 1504.00313.
[4] Andrew M. Stuart,et al. Sequential Monte Carlo methods for Bayesian elliptic inverse problems , 2014, Stat. Comput..
[5] Omar Ghattas,et al. An Analysis of Infinite Dimensional Bayesian Inverse Shape Acoustic Scattering and Its Numerical Approximation , 2014, SIAM/ASA J. Uncertain. Quantification.
[6] Lassi Roininen,et al. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography , 2014 .
[7] Bangti Jin,et al. An analysis of finite element approximation in electrical impedance tomography , 2013, 1312.1390.
[8] A. Stuart,et al. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.
[9] Ville Kolehmainen,et al. Recovering boundary shape and conductivity in electrical impedance tomography , 2013 .
[10] C. Kenig,et al. The Calderón problem with partial data on manifolds and applications , 2012, 1211.1054.
[11] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[12] A. Stuart,et al. Ensemble Kalman methods for inverse problems , 2012, 1209.2736.
[13] Sari Lasanen,et al. Non-Gaussian statistical inverse problems. Part I: Posterior distributions , 2012 .
[14] Sari Lasanen,et al. Posterior convergence for approximated unknowns in non-Gaussian statistical inverse problems , 2011, 1112.0906.
[15] Daria Schymura,et al. An upper bound on the volume of the symmetric difference of a body and a congruent copy , 2010, ArXiv.
[16] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[17] Matti Lassas,et al. REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .
[18] Matti Lassas. Eero Saksman,et al. Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.
[19] M. Bédard. Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234 , 2008 .
[20] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[21] S. Siltanen,et al. Reconstructions of piecewise constant conductivities by the D-bar method for electrical impedance tomography , 2008 .
[22] Matti Lassas,et al. D-Bar Method for Electrical Impedance Tomography with Discontinuous Conductivities , 2007, SIAM J. Appl. Math..
[23] William R B Lionheart,et al. Uses and abuses of EIDORS: an extensible software base for EIT , 2006, Physiological measurement.
[24] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[25] G. Alessandrini,et al. Stable Determination of an Inclusion by Boundary Measurements , 2004, SIAM J. Math. Anal..
[26] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[27] E. Somersalo,et al. Inverse problems with structural prior information , 1999 .
[28] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[29] Bradley P. Carlin,et al. Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .
[30] Liliana Borcea,et al. Network Approximation for Transport Properties of High Contrast Materials , 1998, SIAM J. Appl. Math..
[31] A. Nachman,et al. Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .
[32] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[33] E. Somersalo,et al. Existence and uniqueness for electrode models for electric current computed tomography , 1992 .
[34] Erkki Somersalo,et al. Linear inverse problems for generalised random variables , 1989 .
[35] A. Nachman,et al. Reconstructions from boundary measurements , 1988 .
[36] Giovanni Alessandrini,et al. Stable determination of conductivity by boundary measurements , 1988 .
[37] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[38] J. Sylvester,et al. A global uniqueness theorem for an inverse boundary value problem , 1987 .
[39] A. Mandelbaum,et al. Linear estimators and measurable linear transformations on a Hilbert space , 1984 .
[40] John G. Webster,et al. An Impedance Camera for Spatially Specific Measurements of the Thorax , 1978, IEEE Transactions on Biomedical Engineering.
[41] Joel Franklin,et al. Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .
[42] R. E. Langer,et al. An inverse problem in differential equations , 1933 .