Expressive Logics for Coinductive Predicates

The classical Hennessy-Milner theorem says that two states of an image-finite transition system are bisimilar if and only if they satisfy the same formulas in a certain modal logic. In this paper we study this type of result in a general context, moving from transition systems to coalgebras and from bisimilarity to coinductive predicates. We formulate when a logic fully characterises a coinductive predicate on coalgebras, by providing suitable notions of adequacy and expressivity, and give sufficient conditions on the semantics. The approach is illustrated with logics characterising similarity, divergence and a behavioural metric on automata.

[1]  Yde Venema,et al.  Lax extensions of coalgebra functors and their logic , 2015, J. Comput. Syst. Sci..

[2]  Dirk Pattinson,et al.  Coalgebraic semantics of modal logics: An overview , 2011, Theor. Comput. Sci..

[3]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[4]  Ana Sokolova,et al.  Exemplaric Expressivity of Modal Logics , 2010, J. Log. Comput..

[5]  Daniel Gorín,et al.  Simulations and Bisimulations for Coalgebraic Modal Logics , 2013, CALCO.

[6]  Dirk Pattinson Expressive Logics for Coalgebras via Terminal Sequence Induction , 2004, Notre Dame J. Formal Log..

[7]  Alexander Kurz,et al.  Expressiveness of Positive Coalgebraic Logic , 2012, Advances in Modal Logic.

[8]  Lutz Schröder,et al.  Expressivity of coalgebraic modal logic: The limits and beyond , 2008, Theor. Comput. Sci..

[9]  Marcello M. Bonsangue,et al.  Duality for Logics of Transition Systems , 2005, FoSSaCS.

[10]  James Worrell,et al.  Testing Semantics: Connecting Processes and Process Logics , 2006, AMAST.

[11]  Helle Hvid Hansen,et al.  Bisimulation for Weakly Expressive Coalgebraic Modal Logics , 2017, CALCO.

[12]  James Worrell,et al.  A behavioural pseudometric for probabilistic transition systems , 2005, Theor. Comput. Sci..

[13]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[14]  Barbara König,et al.  (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras , 2017, CONCUR.

[15]  Stefan Milius,et al.  Graded Monads and Graded Logics for the Linear Time - Branching Time Spectrum , 2018, CONCUR.

[16]  Ichiro Hasuo,et al.  Codensity Games for Bisimilarity , 2019, New Generation Computing.

[17]  Abbas Edalat,et al.  Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..

[18]  Rob J. van Glabbeek,et al.  The Linear Time-Branching Time Spectrum (Extended Abstract) , 1990, CONCUR.

[19]  Bart Jacobs,et al.  Introduction to Coalgebra: Towards Mathematics of States and Observation , 2016, Cambridge Tracts in Theoretical Computer Science.

[20]  Bart Jacobs,et al.  Simulations in Coalgebra , 2003, CMCS.

[21]  Bartek Klin,et al.  Coalgebraic Modal Logic Beyond Sets , 2007, MFPS.

[22]  David Sprunger,et al.  Fibrational Bisimulations and Quantitative Reasoning , 2018, CMCS.

[23]  Bart Jacobs,et al.  Coinductive Predicates and Final Sequences in a Fibration , 2013, MFPS.

[24]  Paolo Baldan,et al.  Coalgebraic Behavioral Metrics , 2017, Log. Methods Comput. Sci..

[25]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[26]  Alexander Kurz,et al.  Algebraic Semantics for Coalgebraic Logics , 2004, CMCS.

[27]  Marta Bílková,et al.  Expressivity of Many-Valued Modal Logics, Coalgebraically , 2016, WoLLIC.

[28]  Prakash Panangaden,et al.  Expressiveness of probabilistic modal logics: A gradual approach , 2019, Inf. Comput..

[29]  Jurriaan Rot,et al.  A general account of coinduction up-to , 2016, Acta Informatica.

[30]  Barbara König,et al.  A van Benthem Theorem for Fuzzy Modal Logic , 2018, LICS.

[31]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[32]  Barbara König,et al.  Up-To Techniques for Behavioural Metrics via Fibrations , 2018, CONCUR.

[33]  Bartek Klin The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic , 2005, CALCO.

[34]  Sebastian Enqvist Homomorphisms of Coalgebras from Predicate Liftings , 2013, CALCO.