AFLP and MS-AFLP Analysis of the Variation within Saffron Crocus (Crocus sativus L.) Germplasm
暂无分享,去创建一个
Licia Colli | Omar Santana | Marta Roldán | Marcela Santaella | J. Fernández | L. Colli | M. Busconi | Matteo Busconi | Rosa Ana Sánchez | Marcelino De-Los-Mozos Pascual | José-Antonio Fernández | M. Roldán | R. Sánchez | O. Santana | Marcela Santaella | Marcelino De-Los-Mozos Pascual | J. Fernández
[1] G. Eisenbrand,et al. Crocus sativus L. , 1992 .
[2] M. Nei. Molecular Evolutionary Genetics , 1987 .
[3] Jian-Kang Zhu,et al. Epigenetic regulation of stress responses in plants. , 2009, Current opinion in plant biology.
[4] M. Caiola. SAFFRON REPRODUCTIVE BIOLOGY , 2004 .
[5] R. Slotkin,et al. Strategies for silencing and escape: the ancient struggle between transposable elements and their hosts. , 2011, International review of cell and molecular biology.
[6] F. Brandizzi,et al. Flow cytometric analysis of nuclear DNA inCrocus sativus and allies (Iridaceae) , 1998, Plant Systematics and Evolution.
[7] M. Negbi. Saffron: Crocus sativus L. , 2003 .
[8] S. Fluch,et al. Crocus sativus L. - Molecular Evidence on Its Clonal Origin , 2010 .
[9] F. Bonhomme,et al. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. , 1996 .
[10] S. Lutts,et al. Use of MSAP Markers to Analyse the Effects of Salt Stress on DNA Methylation in Rapeseed (Brassica napus var. oleifera) , 2013, PloS one.
[11] F. Bonhomme,et al. Genetix v. 3.0, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université Montpellier 2, Montpellier. , 1997 .
[12] Guizhen Gao,et al. Evaluation of Genetic and Epigenetic Modification in Rapeseed (Brassica napus) Induced by Salt Stress , 2007 .
[13] J. Fernández,et al. Clonal selection of saffron (Crocus sativus L.): the first optimistic experimental results , 2009, Euphytica.
[14] M. Fraga,et al. Epigenetic regulation of adaptive responses of forest tree species to the environment , 2013, Ecology and evolution.
[15] C. J. Marchant,et al. Chromosome Counts in the Genus Crocus (Iridaceae) , 1973 .
[16] Xuncheng Liu,et al. Chromatin modifications and remodeling in plant abiotic stress responses. , 2012, Biochimica et biophysica acta.
[17] Changqing Zhang,et al. Heritable Epigenetic Variation and its Potential Applications for Crop Improvement , 2013 .
[18] L. Excoffier,et al. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.
[19] Giovanni Montana,et al. Statistical methods in genetics , 2006, Briefings Bioinform..
[20] Danny Reinberg,et al. Molecular Signals of Epigenetic States , 2010, Science.
[21] L. Gómez-Gómez,et al. Saffron is a monomorphic species as revealed by RAPD, ISSR and microsatellite analyses , 2009, BMC Research Notes.
[22] B. Gaut,et al. A triptych of the evolution of plant transposable elements. , 2010, Trends in plant science.
[23] T. Nishimura,et al. DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. , 2012, Plant & cell physiology.
[24] U. Grossniklaus,et al. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. , 2011, Current opinion in plant biology.
[25] J. S. Heslop-Harrison,et al. Genomes, genes and junk: the large-scale organization of plant chromosomes , 1998 .
[26] E. Richards. Natural epigenetic variation in plant species: a view from the field. , 2011, Current opinion in plant biology.
[27] Hasan Vurdu,et al. The World Saffron and Crocus collection: strategies for establishment, management, characterisation and utilisation , 2010, Genetic Resources and Crop Evolution.
[28] N. Rosenberg. distruct: a program for the graphical display of population structure , 2003 .
[29] G. Marconi,et al. Agronomic, chemical and genetic variability of saffron (Crocus sativus L.) of different origin by LC-UV–vis-DAD and AFLP analyses , 2012, Genetic Resources and Crop Evolution.
[30] G. Evanno,et al. Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.
[31] Gilbert Saporta,et al. L'analyse des données , 1981 .
[32] M. Stephens,et al. Inference of population structure using multilocus genotype data: dominant markers and null alleles , 2007, Molecular ecology notes.
[33] A. B. Enjak,et al. Different DNA extraction methods can cause different AFLP profiles in grapevine ( Vitis vinifera L . ) , 2005 .
[34] J. Fernández,et al. BIOLOGY, BIOTECHNOLOGY AND BIOMEDICINE OF SAFFRON , 2004 .
[35] Edward S. Buckler,et al. Genetic structure and domestication history of the grape , 2011, Proceedings of the National Academy of Sciences.
[36] P. Meirmans,et al. genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms , 2004 .
[37] M. Tuna,et al. The genus Crocus, series Crocus (Iridaceae) in Turkey and 2 East Aegean islands: a genetic approach , 2014 .
[38] C. Herrera,et al. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees , 2013 .
[39] M. Zeinalabedini,et al. Saffron (Crocus sativus L.), a monomorphic or polymorphic species? , 2014 .