On the algebra of quasi-shuffles

For any commutative algebra R the shuffle product on the tensor module T(R) can be deformed to a new product. It is called the quasi-shuffle algebra, or stuffle algebra, and denoted Tq(R). We show that if R is the polynomial algebra, then Tq(R) is free for some algebraic structure called Commutative TriDendriform (CTD-algebras). This result is part of a structure theorem for CTD-bialgebras which are associative as coalgebras and whose primitive part is commutative. In other words, there is a good triple of operads (As, CTD, Com) analogous to (Com, As, Lie). In the last part we give a similar interpretation of the quasi-shuffle algebra in the noncommutative setting.

[1]  Marcelo Aguiar,et al.  Pre-Poisson Algebras , 2000 .

[2]  Maria O. Ronco Eulerian idempotents and Milnor–Moore theorem for certain non-cocommutative Hopf algebras , 2002 .

[3]  Christian Krattenthaler,et al.  Non-commutative Hopf algebra of formal diffeomorphisms , 2004 .

[4]  Maria O. Ronco,et al.  Primitive elements in a free dendriform algebra , 1999 .

[5]  Bruno Vallette,et al.  Homology of generalized partition posets , 2007 .

[6]  Jean-Louis Loday,et al.  On the structure of cofree Hopf algebras , 2004, math/0405330.

[7]  Le Bois-Marie,et al.  Integrable Renormalization II : the general case , 2004 .

[8]  John Milnor,et al.  On the Structure of Hopf Algebras , 1965 .

[9]  Pierre Cartier,et al.  Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents , 2001 .

[10]  Pierre Cartier,et al.  On the structure of free baxter algebras , 1972 .

[11]  Li Guo,et al.  Baxter Algebras and Shuffle Products , 2000 .

[12]  K. Ihara,et al.  Derivation and double shuffle relations for multiple zeta values , 2006, Compositio Mathematica.

[13]  Frédéric Chapoton,et al.  Dialgebras and Related Operads , 2001 .

[14]  R. Tennant Algebra , 1941, Nature.

[15]  Michael E. Hoffman,et al.  Quasi-Shuffle Products , 1999 .

[16]  Jean-Louis Loday,et al.  Trialgebras and families of polytopes , 2002 .

[17]  Jean-Louis Loday Scindement d'associativite et algebres de Hopf , 2004 .

[18]  Renormalization as a functor on bialgebras , 2002, hep-th/0210097.