Thermal Effects of Urban Canyon Structure on the Nocturnal Heat Island: Numerical Experiment Using a Mesoscale Model Coupled with an Urban Canopy Model

Abstract A single-layer urban canopy model is incorporated into a simple two-dimensional atmospheric model in order to examine the individual impacts of anthropogenic heating, a large heat capacity, and a small sky-view factor on mesoscale heat island formation. It is confirmed that a nocturnal heat island on a clear, calm summer day results from the difference in atmospheric stability between a city and its surroundings. The difference is caused by anthropogenic heating and the following two effects of urban canyon structure: (i) a larger heat capacity due to the walls and (ii) a smaller sky-view factor. Sensitivity experiments show that the anthropogenic heating increases the surface air temperature though the day. (This factor strongly affects the nocturnal temperature, and the maximum increase of 0.67°C occurs at 0500 LST.) The larger heat capacity due to the walls decreases the daytime temperature and increases the nocturnal temperature. (The maximum increase of 0.39°C occurs at 0600 LST.) The smalle...

[1]  F. Kimura,et al.  Coupling a Single-Layer Urban Canopy Model with a Simple Atmospheric Model: Impact on Urban Heat Island Simulation for an Idealized Case , 2004 .

[2]  A. Martilli Numerical Study of Urban Impact on Boundary Layer Structure: Sensitivity to Wind Speed, Urban Morphology, and Rural Soil Moisture , 2002 .

[3]  A. Clappier,et al.  An Urban Surface Exchange Parameterisation for Mesoscale Models , 2002 .

[4]  Y. Ohashi,et al.  Numerical experiments on the weak-wind region formed ahead of the sea-breeze front , 2002 .

[5]  V. Ca,et al.  A k-*epsiv Turbulence Closure Model For The Atmospheric Boundary Layer Including Urban Canopy , 2002 .

[6]  菅原 広史 Heat exchange between urban structures and the atmospheric boundary layer , 2002 .

[7]  Y. Ohashi,et al.  Local circulations developed in the vicinity of both coastal and inland urban areas : a numerical study with a mesoscale atmospheric model , 2002 .

[8]  Ken-ichi Narita,et al.  Estimation of Effective Thermal Property Parameter on a Heterogeneous Urban Surface , 2001 .

[9]  H. Kondo,et al.  A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models , 2001 .

[10]  F. Kimura,et al.  Comparative Studies In The Local Circulations Induced By Land-Use And By Topography , 2001 .

[11]  M. Kanda,et al.  Numerical Study On Cloud Lines Over An Urban Street In Tokyo , 2001 .

[12]  Hiromaru Hirakuchi,et al.  The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area , 2000 .

[13]  Valéry Masson,et al.  A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models , 2000 .

[14]  Keisuke Hanaki,et al.  Impact of anthropogenic heat on urban climate in Tokyo , 1999 .

[15]  Haider Taha,et al.  Modifying a Mesoscale Meteorological Model to Better Incorporate Urban Heat Storage: A bulk-parameterization approach , 1999 .

[16]  R. Avissar Potential effects of vegetation on the urban thermal environment , 1996 .

[17]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[18]  M. Rotach Profiles of turbulence statistics in and above an urban street canyon , 1995 .

[19]  Timothy R. Oke,et al.  Comparison of heat fluxes from summertime observations in the suburbs of four North American cities , 1995 .

[20]  H. Yoshikado Interaction of the sea breeze with urban heat islands of different sizes and locations , 1994 .

[21]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[22]  F. Kimura,et al.  Thermally Induced Wind Passing from Plain to Basin over a Mountain Range , 1993 .

[23]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[24]  Hiroshi Yoshik Ado Numerical study of the daytime urban effect and its interaction with the sea breeze , 1992 .

[25]  Fujio Kimura,et al.  The effects of land-use and anthropogenic heating on the surface temperature in the Tokyo Metropolitan area: A numerical experiment☆ , 1991 .

[26]  Itsushi Uno,et al.  Numerical modeling of the nocturnal urban boundary layer , 1989 .

[27]  F. Kimura Heat Flux on Mixtures of Different Land-use Surface: Test of a New Parameterization Scheme , 1989 .

[28]  T. Oke,et al.  Suburban-rural energy balance comparisons in summer for Vancouver, B.C. , 1986 .

[29]  F. T. Depaul,et al.  Measurements of wind velocities in a street canyon , 1986 .

[30]  F. Kimura,et al.  A numerical experiment on the nocturnal low level jet over the Kanto Plain , 1983 .

[31]  T. Oke Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations , 1981 .

[32]  J. Kondo,et al.  Heat and Momentum Transfers under Strong Stability in the Atmospheric Surface Layer , 1978 .

[33]  N. Saito マクロに見た大気境界層(南関東大気環境調査から) (〔日本気象学会〕昭和52年度春季大会「境界層の構造」の報告 ) , 1977 .

[34]  G. Mellor,et al.  A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .

[35]  M. Aida,et al.  Diurnal Variation of Wind and Temperature Fields in the Ekman Layer , 1973 .

[36]  M. A. Atwater Thermal effects of urbanization and industrialization in the boundary layer: A numerical study , 1972 .

[37]  B. Hicks,et al.  Flux‐gradient relationships in the constant flux layer , 1970 .

[38]  E. Inoue,et al.  On the Turbulent Structure of Airflow within , 1963 .

[39]  N. Phillips,et al.  Scale Analysis of Deep and Shallow Convection in the Atmosphere , 1962 .

[40]  G. Yamamoto On the Radiation Chart. , 1952 .