Axioms of adaptivity for separate marking

Mixed finite element methods with flux errors in $H(div)$-norms and div-least-squares finite element methods require a separate marking strategy in obligatory adaptive mesh-refining. The refinement indicator $\sigma^2(\mathcal T,K)=\eta^2(\mathcal T,K)+\mu^2(K)$ of a finite element domain $K$ in an admissible triangulation $\mathcal T$ consists of some residual-based error estimator $\eta(\mathcal T,K)$ with some reduction property under local mesh-refining and some data approximation error $\mu(K)$. Separate marking means either D\"orfler marking if $\mu^2(\mathcal T) \leq \kappa \eta^2(\mathcal T)$ or otherwise an optimal data approximation algorithm runs with controlled accuracy as established in [Carstensen, Rabus, Math.Comp. 2011; Rabus, J.Numer.Math. 2015]. The axioms are abstract and sufficient conditions on the estimators $\eta(\mathcal T,K)$ and data approximation errors $\mu(K)$ for optimal asymptotic convergence rates. The enfolded set of axioms simplifies \cite{CFP14} for collective marking, treats separate marking established for the first time in an abstract framework, generalizes [Carstensen, Park, SIAM J.Numer.Anal. 2015] for least-squares schemes, and extends [Carstensen, Rabus, Math.Comp. 2011] to the mixed FEM with flux error control in $H(div)$.

[1]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[2]  Hella Rabus,et al.  Quasi-optimal convergence of AFEM based on separate marking, Part II , 2015, J. Num. Math..

[3]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[4]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[5]  Long Chen,et al.  Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..

[6]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[7]  L. D. Marini An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart–Thomas Mixed Method , 1985 .

[8]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[9]  A. Alonso Error estimators for a mixed method , 1996 .

[10]  Carsten Carstensen,et al.  An adaptive least-squares FEM for the Stokes equations with optimal convergence rates , 2017, Numerische Mathematik.

[11]  Carsten Carstensen,et al.  The norm of a discretized gradient in H ( div ) ∗ for a posteriori finite element error analysis , 2015 .

[12]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[13]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[14]  Shipeng Mao,et al.  An optimally convergent adaptive mixed finite element method , 2008, Numerische Mathematik.

[15]  Rob P. Stevenson,et al.  A Remark on Newest Vertex Bisection in Any Space Dimension , 2014, Comput. Methods Appl. Math..

[16]  Carsten Carstensen,et al.  Convergence and Optimality of Adaptive Least Squares Finite Element Methods , 2015, SIAM J. Numer. Anal..

[17]  Carsten Carstensen,et al.  An optimal adaptive mixed finite element method , 2011, Math. Comput..

[18]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[19]  Ronald A. DeVore,et al.  Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.