When are all prime ideals in an ore extension goldie

(1985). When are all prime ideals in an ore extension goldie? Communications in Algebra: Vol. 13, No. 8, pp. 1743-1762.

[1]  Allen D. Bell Goldie Dimension of Prime Factors of Polynomial and Skew Polynomial Rings , 1984 .

[2]  G. Sigurdsson Differential operator rings whose prime factors have bounded Goldie dimension , 1984 .

[3]  D. Poole Prime Ideals and Localization in Noetherian Ore Extensions , 1983 .

[4]  K. R. Pearson,et al.  Skew Polynimials and Jacobson Rings , 1981 .

[5]  C. R. Hajarnavis,et al.  Rings with chain conditions , 1980 .

[6]  D. Passman,et al.  Prime ideals in crossed products of finite groups , 1979 .

[7]  R. Irving Prime ideals of Ore extensions over commutative rings, II , 1979 .

[8]  G. Cauchon,et al.  Endomorphisms, derivations, and polynomial rings , 1978 .

[9]  K. Brown THE SINGULAR IDEALS OF GROUP RINGS , 1977 .

[10]  K. R. Pearson,et al.  A skew polynomial ring over a jacobson ring need not be a jacobson ring , 1977 .

[11]  D. Jordan,et al.  A note on semiprimitivity of ore extensions , 1976 .

[12]  J. Watters Polynomial extensions of Jacobson rings , 1975 .

[13]  Bo Stenstoröm Rings of Quotients: An Introduction to Methods of Ring Theory , 1975 .

[14]  Bo Stenström,et al.  Rings of Quotients: An Introduction to Methods of Ring Theory , 1975 .

[15]  A. Goldie,et al.  Ore Extensions and Polycyclic Group Rings , 1974 .

[16]  A. V. Jategaonkar Skew polynomial rings over orders in Artinian rings , 1972 .

[17]  Charles Lanski Nil Subrings of Goldie Rings are Nilpotent , 1969, Canadian Journal of Mathematics.

[18]  I. Herstein,et al.  Nil Rings Satisfying Certain Chain Conditions , 1964, Canadian Journal of Mathematics.

[19]  N. Jacobson Structure of rings , 1956 .