Active vibration control with optimized piezoelectric topologies

This paper investigates the optimal topology of an actively controlled piezoelectric actuator bonded to an elastic cantilever beam under steady-state harmonic loading. The actuator is discretized using finite elements, and control is applied to the actuator based on the sensor's degrees of freedom using proportional control. This study investigates the optimal distribution of actuator material for one and five layers of finite elements. The optimized actuator topology shows substantial improvement over initial piezoelectric topologies and over traditional actuator placement.

[1]  Noboru Kikuchi,et al.  Design of piezoelectric transducers using topology optimization , 1999 .

[2]  C. I. Tseng,et al.  Distributed vibration control and identification of coupled elastic/piezoelectric systems: Finite element formulation and applications , 1991 .

[3]  N. Kikuchi,et al.  Optimal design of piezoelectric microstructures , 1997 .

[4]  Duane E. Veley,et al.  A comparison of active, passive and hybrid damping in structural design , 1996 .

[5]  K. Y. Lam,et al.  Active Vibration Control of Composite Beams with Piezoelectrics: a Finite Element Model with Third Order Theory , 1998 .

[6]  H. Tzou Piezoelectric Shells: Distributed Sensing and Control of Continua , 1993 .

[7]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[8]  F. Straub,et al.  Response of piezoelectric stack actuators under combined electro-mechanical loading , 2001 .

[9]  G. Visweswara Rao Dynamic Condensation and Synthesis of Unsymmetric Structural Systems , 2002 .

[10]  E. Hinton,et al.  A review of homogenization and topology optimization III—topology optimization using optimality criteria , 1998 .

[11]  N. Kikuchi,et al.  Design of piezocomposite materials and piezoelectric transducers using topology optimization—Part I , 1999 .

[12]  Fu-Kuo Chang,et al.  Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators , 1992 .

[13]  In Lee,et al.  Vibration and actuation characteristics of composite structures with a bonded piezo-ceramic actuator , 1999 .

[14]  Jean-François Deü,et al.  A two-dimensional closed-form solution for the free-vibrations analysis of piezoelectric sandwich plates , 2002 .

[15]  J. Ro,et al.  Performance Characteristics of Active Constrained Layer Damping , 1995 .

[16]  Young-Hun Lim,et al.  Closed loop finite-element modeling of active/passive damping in structural vibration control , 1996 .

[17]  E. Hinton,et al.  A review of homogenization and topology optimization I- homogenization theory for media with periodic structure , 1998 .

[18]  Arnold Lumsdaine,et al.  Design of a piezoelectric actuator using topology optimization , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[19]  Y. A. Khulief,et al.  Active modal control of vibrations in elastic structures in the presence of material damping , 2001 .