Multiband Lossless Compression of Hyperspectral Images

Hyperspectral images exhibit significant spectral correlation, whose exploitation is crucial for compression. In this paper, we investigate the problem of predicting a given band of a hyperspectral image using more than one previous band. We present an information-theoretic analysis based on the concept of conditional entropy, which is used to assess the available amount of correlation and the potential compression gain. Then, we propose a new lossless compression algorithm that employs a Kalman filter in the prediction stage. Simulation results are presented on Airborne Visible Infrared Imaging Spectrometer, Hyperspectral Digital Imagery Collection Experiment, and Hyperspectral Mapper scenes, showing competitive performance with other state-of-the-art compression algorithms.

[1]  Luciano Alparone,et al.  ON-BOARD LOSSLESS HYPERSPECTRAL DATA COMPRESSION: LUT-BASED OR CLASSIFIED SPECTRAL PREDICTION? , 2008 .

[2]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[3]  Enrico Magli,et al.  Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images , 2007, EURASIP J. Adv. Signal Process..

[4]  Giovanni Motta,et al.  Low-complexity lossless compression of hyperspectral imagery via linear prediction , 2005, IEEE Signal Processing Letters.

[5]  Bormin Huang,et al.  Lossless compression of hyperspectral imagery via lookup tables with predictor selection , 2006, SPIE Remote Sensing.

[6]  Luciano Alparone,et al.  Crisp and Fuzzy Adaptive Spectral Predictions for Lossless and Near-Lossless Compression of Hyperspectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[7]  Enrico Magli,et al.  Progressive 3-D coding of hyperspectral images based on JPEG 2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[8]  Enrico Magli,et al.  Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC , 2004, IEEE Geoscience and Remote Sensing Letters.

[9]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..

[10]  Jarno Mielikäinen,et al.  Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data , 2005, IEEE Geoscience and Remote Sensing Letters.

[11]  Jarno Mielikäinen,et al.  Clustered DPCM for the lossless compression of hyperspectral images , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[13]  Michael W. Marcellin,et al.  Part 2 Extensions , 2002 .

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  Enrico Magli,et al.  Transform Coding Techniques for Lossy Hyperspectral Data Compression , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Stephen R. Tate,et al.  Band ordering in lossless compression of multispectral images , 1997, Proceedings of IEEE Data Compression Conference (DCC'94).

[17]  Lei Zhang,et al.  A block-based inter-band lossless hyperspectral image compressor , 2005, Data Compression Conference.

[18]  Luciano Alparone,et al.  Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction , 1999, IEEE Trans. Geosci. Remote. Sens..

[19]  Luciano Alparone,et al.  Near-lossless compression of 3-D optical data , 2001, IEEE Trans. Geosci. Remote. Sens..

[20]  R. E. Roger,et al.  Lossless compression of AVIRIS images , 1996, IEEE Trans. Image Process..

[21]  Leonard John Otten,et al.  Ultraspectral imaging: a new contribution to global virtual presence , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[22]  Matthew A. Klimesh,et al.  Low-complexity lossless compression of hyperspectral imagery via adaptive filtering , 2005 .

[23]  Donald A. Adjeroh,et al.  Edge-Based Prediction for Lossless Compression of Hyperspectral Images , 2007, 2007 Data Compression Conference (DCC'07).

[24]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .

[25]  Nasir D. Memon,et al.  Context-based, adaptive, lossless image coding , 1997, IEEE Trans. Commun..

[26]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[27]  Nasir Memon,et al.  Context-Based Lossless Interband , 2000 .

[28]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[29]  Khalid Sayood,et al.  Lossless hyperspectral image compression using context-based conditional averages , 2005, Data Compression Conference.

[30]  John F. Arnold,et al.  The lossless compression of AVIRIS images by vector quantization , 1997, IEEE Trans. Geosci. Remote. Sens..

[31]  Arto Kaarna,et al.  Lossless hyperspectral image compression via linear prediction , 2002, SPIE Defense + Commercial Sensing.

[32]  J. Mielikainen,et al.  Lossless compression of hyperspectral images using lookup tables , 2006, IEEE Signal Processing Letters.

[33]  Jing Zhang,et al.  An Efficient Reordering Prediction-Based Lossless Compression Algorithm for Hyperspectral Images , 2007, IEEE Geoscience and Remote Sensing Letters.