The role of neuronal synchronization in selective attention

[1]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[2]  J. Pernier,et al.  Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[4]  J. Pernier,et al.  Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans , 1997, The Journal of Neuroscience.

[5]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[6]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[7]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[8]  W. Singer,et al.  Precisely Synchronized Oscillatory Firing Patterns Require Electroencephalographic Activation , 1999, The Journal of Neuroscience.

[9]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Ermentrout,et al.  Gamma rhythms and beta rhythms have different synchronization properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Sejnowski,et al.  Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models , 2000, The Journal of Neuroscience.

[12]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[13]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[14]  S. Hestrin,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2001, Science.

[15]  C. Elger,et al.  Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling , 2001, Nature Neuroscience.

[16]  S. Bressler,et al.  Synchronized activity in prefrontal cortex during anticipation of visuomotor processing , 2002, Neuroreport.

[17]  Bijan Pesaran,et al.  Temporal structure in neuronal activity during working memory in macaque parietal cortex , 2000, Nature Neuroscience.

[18]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[19]  Marc W Howard,et al.  Theta and Gamma Oscillations during Encoding Predict Subsequent Recall , 2003, The Journal of Neuroscience.

[20]  Daniel Gembris,et al.  Top-down attentional processing enhances auditory evoked gamma band activity , 2003, Neuroreport.

[21]  Miles A Whittington,et al.  Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro , 2003, Trends in Neurosciences.

[22]  J. Fell,et al.  Rhinal–hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization? , 2003, The European journal of neuroscience.

[23]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[24]  Stephen J. Anderson,et al.  Attentional modulation of oscillatory activity in human visual cortex , 2003, NeuroImage.

[25]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[26]  M. Chun,et al.  The Neural Fate of Consciously Perceived and Missed Events in the Attentional Blink , 2004, Neuron.

[27]  Werner Lutzenberger,et al.  Reciprocal modulation of neuromagnetic induced gamma activity by attention in the human visual and auditory cortex , 2004, NeuroImage.

[28]  W. Singer,et al.  Short- and Long-Term Effects of Cholinergic Modulation on Gamma Oscillations and Response Synchronization in the Visual Cortex , 2004, The Journal of Neuroscience.

[29]  Jorge V. José,et al.  Inhibitory synchrony as a mechanism for attentional gain modulation , 2004, Journal of Physiology-Paris.

[30]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[31]  Kimron Shapiro,et al.  Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Eckhorn,et al.  Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. , 2004, Cerebral cortex.

[33]  W. Freiwald,et al.  Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. , 2004, Cerebral cortex.

[34]  S. Bressler,et al.  Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[36]  Andreas Keil,et al.  Neuronal Synchronization and Selective Color Processing in the Human Brain , 2004, Journal of Cognitive Neuroscience.

[37]  K. Linkenkaer-Hansen,et al.  Prestimulus Oscillations Enhance Psychophysical Performance in Humans , 2004, The Journal of Neuroscience.

[38]  M. Kawato,et al.  Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex. , 2005, Brain research. Cognitive brain research.

[39]  Arne D. Ekstrom,et al.  Human hippocampal theta activity during virtual navigation , 2005, Hippocampus.

[40]  Mark D'Esposito,et al.  Searching for “the Top” in Top-Down Control , 2005, Neuron.

[41]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[42]  Christian Gerloff,et al.  Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. , 2005, Cerebral cortex.

[43]  M. Wilson,et al.  Theta Rhythms Coordinate Hippocampal–Prefrontal Interactions in a Spatial Memory Task , 2005, PLoS biology.

[44]  Evgueniy V. Lubenov,et al.  Prefrontal Phase Locking to Hippocampal Theta Oscillations , 2005, Neuron.

[45]  Gregor Thut,et al.  Prediction of response speed by anticipatory high‐frequency (gamma band) oscillations in the human brain , 2005, Human brain mapping.

[46]  Christopher Summerfield,et al.  Coherent theta-band EEG activity predicts item-context binding during encoding , 2005, NeuroImage.

[47]  Ole Paulsen,et al.  Hippocampal gamma‐frequency oscillations: from interneurones to pyramidal cells, and back , 2005, The Journal of physiology.

[48]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[49]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[50]  Eric A. Zilli,et al.  Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior , 2005, Hippocampus.

[51]  K. Linkenkaer-Hansen,et al.  Early Neural Correlates of Conscious Somatosensory Perception , 2005, The Journal of Neuroscience.

[52]  G. V. Simpson,et al.  Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex , 2003, Neuron.

[53]  Edward O. Mann,et al.  Perisomatic Feedback Inhibition Underlies Cholinergically Induced Fast Network Oscillations in the Rat Hippocampus In Vitro , 2005, Neuron.

[54]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[55]  Cees van Leeuwen,et al.  Phase Synchronization Analysis of EEG during Attentional Blink , 2005, Journal of Cognitive Neuroscience.

[56]  J. Palva,et al.  Phase Synchrony among Neuronal Oscillations in the Human Cortex , 2005, The Journal of Neuroscience.

[57]  O. Bertrand,et al.  Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. , 2005, Cerebral cortex.

[58]  Philippe Kahane,et al.  High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex , 2005, NeuroImage.

[59]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  W. Klimesch,et al.  Relevance of EEG alpha and theta oscillations during task switching , 2006, Experimental Brain Research.

[61]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[62]  M. Tachibana,et al.  Synchronized retinal oscillations encode essential information for escape behavior in frogs , 2005, Nature Neuroscience.

[63]  N. Logothetis,et al.  Local field potential reflects perceptual suppression in monkey visual cortex , 2006, Proceedings of the National Academy of Sciences.

[64]  Steven G Potkin,et al.  ALPHA EEG PREDICTS VISUAL REACTION TIME , 2006, The International journal of neuroscience.

[65]  T. Sejnowski,et al.  Network Oscillations: Emerging Computational Principles , 2006, The Journal of Neuroscience.

[66]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[67]  Yixiang Jin ALPHA EEG PREDICTS VISUAL REACTION TIME , 2006 .

[68]  A. Bacci,et al.  Enhancement of Spike-Timing Precision by Autaptic Transmission in Neocortical Inhibitory Interneurons , 2006, Neuron.

[69]  Werner Lutzenberger,et al.  Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli , 2006, NeuroImage.

[70]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[71]  John J. Foxe,et al.  Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. , 2006, Journal of neurophysiology.

[72]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[73]  R. Oostenveld,et al.  Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas , 2006, The Journal of Neuroscience.

[74]  Kristina M. Visscher,et al.  The neural bases of momentary lapses in attention , 2006, Nature Neuroscience.

[75]  R. Oostenveld,et al.  Theta and Gamma Oscillations Predict Encoding and Retrieval of Declarative Memory , 2006, The Journal of Neuroscience.

[76]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[77]  Marina Pavlova,et al.  Attentional modulation of cortical neuromagnetic gamma response to biological movement. , 2006, Cerebral cortex.

[78]  Christopher Summerfield,et al.  Dissociable Neural Mechanisms for Encoding Predictable and Unpredictable Events , 2006, Journal of Cognitive Neuroscience.

[79]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[80]  Per B. Sederberg,et al.  Oscillatory correlates of the primacy effect in episodic memory , 2006, NeuroImage.

[81]  Christian Büchel,et al.  Integration of local features to a global percept by neural coupling. , 2006, Cerebral cortex.

[82]  Daniel Lenz,et al.  What's that sound? Matches with auditory long-term memory induce gamma activity in human EEG. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[83]  D. C. Mccarthy,et al.  Hippocampal and neocortical gamma oscillations predict memory formation in humans. , 2006, Cerebral cortex.