An Improved Framework for Watershed Discretization and Model Calibration: Application to the Great Lakes Basin

This paper reports on recent progress towards improved predictions of the land surface-hydrological modelling system MESH (Modelisation Environmentale–Surface et Hydrologie) via its calibration over the Laurentian Great Lakes Basin. Accordingly, a “global” calibration strategy is utilized in which parameters for all land class types are calibrated simultaneously to a number of sub-basins and then validated in time and in space. Model performance was evaluated based on four performance metrics, including the Nash-Sutcliffe (NS) coefficient and simulated versus observed hydrographs. Results from two calibration approaches indicate that in the model validation mode, the global strategy generates preferred results over an alternative calibration strategy, referred to as the “individual” strategy, in which parameters are calibrated to a single sub-basin with a dominant land type individually and then validated in another sub-basin with the same dominant land type. The global calibration strategy was relatively successful despite the high problem dimensionality (51 model parameters calibrated) and relatively small number of model evaluations (1000 parameter sets evaluated per trial) used in the automatic calibration procedure. NS values for spatial validation range from 0.10 to 0.72 with a median of 0.41 for the 15 subbasins considered. Results also confirm that a careful model calibration and validation is unavoidable before any application of the model.

[1]  Kyle R. Douglas-Mankin,et al.  Hydrologic and Water Quality Models: Use, Calibration, and Validation , 2012 .

[2]  Craig A. Stow,et al.  An appraisal of the Great Lakes advanced hydrologic prediction system , 2011 .

[3]  C. P. V. Wilson,et al.  Groundwater Hydrology (2nd edn) by D. K. Todd. Wiley, New York, 1980. 552 pp. Price: £11·00 (Paperback); £27·35 (Hardback). ISBN 0 471 08641 X , 2007 .

[4]  Nicholas Kouwen,et al.  Hydrologic modeling of pathogen fate and transport. , 2006, Environmental science & technology.

[5]  Alain Pietroniro,et al.  Grouped Response Units for Distributed Hydrologic Modeling , 1993 .

[6]  A. Zadra,et al.  The 15‐km version of the Canadian regional forecast system , 2006 .

[7]  Wolfgang-Albert Flügel,et al.  Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany , 1995 .

[8]  Philip Marsh,et al.  Regionalisation of land surface hydrological model parameters in subarctic and arctic environments , 2008 .

[9]  Nicholas Kouwen,et al.  Towards hydrological model calibration and validation: simulation of stable water isotopes using the isoWATFLOOD model , 2013 .

[10]  J. Arnold,et al.  SWAT2000: current capabilities and research opportunities in applied watershed modelling , 2005 .

[11]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[12]  Naota Hanasaki,et al.  A grid-based assessment of global water scarcity including virtual water trading , 2006 .

[13]  Jonas Roberts,et al.  Modeling the Potential Impacts of Climate Change on a Small Watershed in Labrador, Canada , 2012 .

[14]  K. Abbaspour,et al.  Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT , 2007 .

[15]  D. Verseghy,et al.  CLASS-A Canadian Land Surface Scheme for GCMs , 1993 .

[16]  Bryan A. Tolson,et al.  An efficient framework for hydrologic model calibration on long data periods , 2013 .

[17]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[18]  J. Feyen,et al.  Effect of watershed delineation and areal rainfall distribution on runoff prediction using the SWAT model , 2009 .

[19]  N. Kouwen,et al.  Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme class with the distributed hydrological model watflood , 2000 .

[20]  Henrik Madsen,et al.  Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives , 2003 .

[21]  Pierre Viallet,et al.  Towards multi-scale integrated hydrological models using the LIQUID® framework. Overview of the concepts and first application examples , 2010, Environ. Model. Softw..

[22]  Diana Verseghy,et al.  THE CANADIAN LAND SURFACE SCHEME Technical Documentation - Version 3.4 , 2008 .

[23]  T. Gan,et al.  Automatic Calibration of Conceptual Rainfall-Runoff Models: Optimization Algorithms, Catchment Conditions, and Model Structure , 1996 .

[24]  Christine A. Shoemaker,et al.  Efficient prediction uncertainty approximation in the calibration of environmental simulation models , 2008 .

[25]  Alain Pietroniro,et al.  Towards an improved land surface scheme for prairie landscapes , 2014 .

[26]  Harold Ritchie,et al.  ON THE USE OF COUPLED ATMOSPHERIC AND HYDROLOGIC MODELS AT REGIONAL SCALE , 2022 .

[27]  C. Shoemaker,et al.  Assessing the impacts of parameter uncertainty for computationally expensive groundwater models , 2006 .

[28]  Micha Werner,et al.  Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling , 2003 .

[29]  R. Clarke A review of some mathematical models used in hydrology, with observations on their calibration and use , 1973 .

[30]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[31]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[32]  L. Shawn Matott,et al.  Calibrating Environment Canada's MESH Modelling System over the Great Lakes Basin , 2014 .

[33]  Peter D. Blanken,et al.  Predicting the Net Basin Supply to the Great Lakes with a Hydrometeorological Model , 2012 .

[34]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[35]  K. Abbaspour,et al.  Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure , 2004 .

[36]  Alain Pietroniro,et al.  APPLICATION OF A GROUPED RESPONSE UNIT HYDROLOGICAL MODEL TO A NORTHERN WETLAND REGION , 1996 .

[37]  Avi Ostfeld,et al.  A hybrid genetic—instance based learning algorithm for CE-QUAL-W2 calibration , 2005 .

[38]  J. Mahfouf,et al.  A Canadian precipitation analysis (CaPA) project: Description and preliminary results , 2007 .

[39]  Alain Pietroniro,et al.  Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale , 2006 .

[40]  Chuntian Cheng,et al.  Multiple criteria rainfall–runoff model calibration using a parallel genetic algorithm in a cluster of computers / Calage multi-critères en modélisation pluie–débit par un algorithme génétique parallèle mis en œuvre par une grappe d'ordinateurs , 2005 .

[41]  Dong Jun Seo,et al.  Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search , 2008 .

[42]  B. Neff,et al.  Uncertainty in the Great Lakes water balance , 2005 .

[43]  Philip Marsh,et al.  Characterizing snowmelt variability in a land‐surface‐hydrologic model , 2006 .

[44]  James A. Falcone,et al.  GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow , 2011 .

[45]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[46]  J. Doherty,et al.  A hybrid regularized inversion methodology for highly parameterized environmental models , 2005 .

[47]  Raghavan Srinivasan,et al.  SUBWATERSHED SPATIAL ANALYSIS TOOL: DISCRETIZATION OF A DISTRIBUTED HYDROLOGIC MODEL BY STATISTICAL CRITERIA 1 , 2002 .

[48]  A. Maclean,et al.  Calibration and Analysis of the MESH Hydrological Model applied to Cold Regions , 2009 .

[49]  S. Sorooshian,et al.  Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system , 2004, Journal of Hydrology.

[50]  David G. Tarboton,et al.  Application of TOPNET in the distributed model intercomparison project , 2004 .

[51]  Keith Beven,et al.  A dynamic TOPMODEL , 2001 .

[52]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[53]  E. Vivoni,et al.  Catchment hydrologic response with a fully distributed triangulated irregular network model , 2004 .

[54]  Craig A. Stow,et al.  Water Loss from the Great Lakes , 2014, Science.

[55]  Hoshin V. Gupta,et al.  On the use of spatial regularization strategies to improve calibration of distributed watershed models , 2010 .

[56]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[57]  S. Attinger,et al.  Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale , 2010 .

[58]  P. E. O'connell,et al.  An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system , 1986 .

[59]  Frank W. Millerd,et al.  The Economic Impact of Climate Change on Canadian Commercial Navigation on the Great Lake , 2005 .

[60]  K. Beven,et al.  Equifinality and uncertainty in physically based soil erosion models: Application of the glue methodology to WEPP-the water erosion prediction project-for sites in the UK and USA , 2000 .

[61]  H. Gupta,et al.  Understanding uncertainty in distributed flash flood forecasting for semiarid regions , 2008 .

[62]  G. McCabe,et al.  Century‐scale variability in global annual runoff examined using a water balance model , 2011 .

[63]  Tamara G. Kolda,et al.  Algorithm 856: APPSPACK 4.0: asynchronous parallel pattern search for derivative-free optimization , 2006, TOMS.

[64]  Vincent Fortin,et al.  Advancing Great Lakes Hydrological Science Through Targeted Binational Collaborative Research , 2012 .

[65]  George Kuczera,et al.  A limited‐memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models , 2010 .

[66]  Keith Beven,et al.  Effects of spatial variability and scale with implications to hydrologic modeling , 1988 .

[67]  Bryan A. Tolson,et al.  Reducing the computational cost of automatic calibration through model preemption , 2010 .

[68]  Hoshin Vijai Gupta,et al.  Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins , 2007 .

[69]  F. Seglenieks Creation of a gridded time series of hydrological variables for Canada , 2009 .

[70]  A. Pitman The evolution of, and revolution in, land surface schemes designed for climate models , 2003 .

[71]  M. Sivapalan,et al.  A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics , 1998 .

[72]  Stephen J. Burges,et al.  A framework for classifying and comparing distributed hillslope and catchment hydrologic models , 2007 .

[73]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[74]  Vincent Fortin,et al.  Assessment of a NEMO-based hydrodynamic modelling system for the Great Lakes , 2012 .

[75]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[76]  Eric D. Soulis,et al.  A hydrology modelling framework for the Mackenzie GEWEX programme , 2003 .

[77]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[78]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[79]  Alain Pietroniro,et al.  A Land Cover-Based Snow Cover Representation for Distributed Hydrologic Models , 1995 .

[80]  Raghavan Srinivasan,et al.  Approximating SWAT Model Using Artificial Neural Network and Support Vector Machine 1 , 2009 .

[81]  P. E. O'connell,et al.  IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences , 2003 .

[82]  Hoshin Vijai Gupta,et al.  A spatial regularization approach to parameter estimation for a distributed watershed model , 2008 .

[83]  J. Dehotin,et al.  Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments , 2008 .

[84]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[85]  John R. Williams,et al.  LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1 , 1998 .

[86]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[87]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[88]  Lauren M. Fry,et al.  The Great Lakes Runoff Intercomparison Project Phase 1: Lake Michigan (GRIP-M) , 2014 .

[89]  John H. Seinfeld,et al.  Global sensitivity analysis—a computational implementation of the Fourier Amplitude Sensitivity Test (FAST) , 1982 .

[90]  H. Mooney,et al.  Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere , 1997, Science.

[91]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[92]  Céline Bonhomme,et al.  The dilemma of spatial representation for urban hydrology semi-distributed modelling: Trade-offs among complexity, calibration and geographical data , 2014 .

[93]  D. Verseghy,et al.  Class—A Canadian land surface scheme for GCMS. I. Soil model , 2007 .

[94]  Tammo S. Steenhuis,et al.  WATERSHED SCALE MODELING OF CRITICAL SOURCE AREAS OF RUNOFF GENERATION AND PHOSPHORUS TRANSPORT 1 , 2005 .

[95]  Rodney A. Sheets,et al.  Ground-water modeling of pumping effects near regional ground-water divides and river/aquifer systems - Results and implications of numerical experiments , 2005 .

[96]  Peter M. A. Sloot,et al.  Application of parallel computing to stochastic parameter estimation in environmental models , 2006, Comput. Geosci..

[97]  B J Fregly,et al.  Parallel global optimization with the particle swarm algorithm , 2004, International journal for numerical methods in engineering.

[98]  Soroosh Sorooshian,et al.  Toward improved streamflow forecasts: value of semidistributed modeling , 2001 .

[99]  Thomas C. Winter,et al.  THE CONCEPT OF HYDROLOGIC LANDSCAPES 1 , 2001 .

[100]  S. Sorooshian,et al.  A multistep automatic calibration scheme for river forecasting models , 2000 .

[101]  G. H. Leavesley,et al.  Precipitation-runoff modeling system; user's manual , 1983 .

[102]  G. Kuczera Efficient subspace probabilistic parameter optimization for catchment models , 1997 .