Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths

Otoliths in bony fishes play an important role in the senses of balance and hearing. Otolith mass and shape are, among others, likely to be decisive factors influencing otolith motion and thus ear functioning. Yet our knowledge of how exactly these factors influence otolith motion is incomplete. In addition, experimental studies directly investigating the function of otoliths in the inner ear are scarce and yield partly conflicting results. Herein, we discuss questions and hypotheses on how otolith mass and shape, and the relationship between the sensory epithelium and overlying otolith, influence otolith motion. We discuss (i) the state‐of‐the‐art knowledge regarding otolith function, (ii) gaps in knowledge that remain to be filled, and (iii) future approaches that may improve our understanding of the role of otoliths in ear functioning. We further link these functional questions to the evolution of solid teleost otoliths instead of numerous tiny otoconia as found in most other vertebrates. Until now, the selective forces and/or constraints driving the evolution of solid calcareous otoliths and their diversity in shape in teleosts are largely unknown. Based on a data set on the structure of otoliths and otoconia in more than 160 species covering the main vertebrate groups, we present a hypothetical framework for teleost otolith evolution. We suggest that the advent of solid otoliths may have initially been a selectively neutral ‘by‐product’ of other key innovations during teleost evolution. The teleost‐specific genome duplication event may have paved the way for diversification in otolith shape. Otolith shapes may have evolved along with the considerable diversity of, and improvements in, auditory abilities in teleost fishes. However, phenotypic plasticity may also play an important role in the creation of different otolith types, and different portions of the otolith may show different degrees of phenotypic plasticity. Future studies should thus adopt a phylogenetic perspective and apply comparative and methodologically integrative approaches, including fossil otoliths, when investigating otoconia/otolith evolution and their function in the inner ear.

[1]  R. Vasconcelos,et al.  Vocal differentiation parallels development of auditory saccular sensitivity in a highly soniferous fish , 2015, Journal of Experimental Biology.

[2]  Richard R. Fay,et al.  Rethinking sound detection by fishes , 2011, Hearing Research.

[3]  D. Chalopin,et al.  The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates , 2014, Nature Communications.

[4]  B. Riley,et al.  Otoc1: A novel otoconin‐90 ortholog required for otolith mineralization in zebrafish , 2008, Developmental neurobiology.

[5]  P. Deluca The International Commission on Radiation Units and Measurements , 2008, Journal of the ICRU.

[6]  J. T. Corwin,et al.  Peripheral auditory physiology in the lemon shark: Evidence of parallel otolithic and non-otolithic sound detection , 1981, Journal of comparative physiology.

[7]  M. Ross,et al.  Each otoconia polymorph has a protein unique to that polymorph. , 1991, Comparative biochemistry and physiology. B, Comparative biochemistry.

[8]  H. Borrmann,et al.  The Inner Structure of Human Otoconia , 2014, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[9]  K. J. Goldman,et al.  Energetics, Metabolism, and Endothermy in Sharks and Rays , 2012 .

[10]  Z. Gong,et al.  Comparative Transcriptome Analyses Indicate Molecular Homology of Zebrafish Swimbladder and Mammalian Lung , 2011, PloS one.

[11]  A. V. D. Berg,et al.  Zebrafish can hear sound pressure and particle motion in a synthesized sound field , 2013 .

[12]  T. Roberts,et al.  The equilibrium function of the otolith organs of the thornback ray (Raja clavata) , 1949, The Journal of physiology.

[13]  A. Popper,et al.  Quantitative analyses of postembryonic hair cell addition in the otolithic endorgans of the inner ear of the european hake, merluccius merluccius (gadiformes, teleostei) , 1994, The Journal of comparative neurology.

[14]  I. Evdokimov,et al.  Otolithic apparatus in Black Sea elasmobranchs , 2000 .

[15]  Pierre Béland,et al.  Scauménellisation de l'Acanthodii Triazeugacanthus affinis (Whiteaves) de la formation d'Escuminac (Dévonien supérieur de Miguasha, Québec) : révision du Scaumenella mesacanthi Graham-Smith , 1985 .

[16]  P. S. Enger,et al.  Frequency Discrimination in Teleosts—Central or Peripheral? , 1981 .

[17]  R. Gauldie Ultrastructure of lamellae, mineral and matrix components of fish otolith twinned aragonite crystals: implications for estimating age in fish. , 1999, Tissue & cell.

[18]  Arthur N. Popper,et al.  Why otoliths? Insights from inner ear physiology and fisheries biology , 2005 .

[19]  D. Fekete,et al.  Atlas of the developing inner ear in zebrafish , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[20]  A. Popper,et al.  Development of ultrasound detection in American shad (Alosa sapidissima) , 2004, Journal of Experimental Biology.

[21]  H. Engström,et al.  The ultrastructure of statoconia. , 1955 .

[22]  A. Popper,et al.  The fine structure 0f the sacculus and lagena of a teleost fish , 1981, Hearing Research.

[23]  A. Popper Scanning electron microscopic study of the otolithic organs in the bichir (polypterus bichir) and shovel‐nose sturgeon (scaphirhynchus platorynchus) , 1978, The Journal of comparative neurology.

[24]  A. Schuijf Directional hearing of cod (Gadus morhua) under approximate free field conditions , 1975, Journal of comparative physiology.

[25]  K. Maruska,et al.  Comparison of Electrophysiological Auditory Measures in Fishes. , 2016, Advances in experimental medicine and biology.

[26]  A. J. Hudspeth,et al.  How the ear's works work , 1989, Nature.

[27]  J. Postlethwait,et al.  Polyploidy in Fish and the Teleost Genome Duplication , 2012 .

[28]  A. Lombarte,et al.  Using sagittal otoliths and eye diameter for ecological characterization of deep-sea fish: Aphanopus carbo and A. intermedius from NE Atlantic waters , 2010 .

[29]  A. Lombarte,et al.  Ecomorphological trends in the Artedidraconidae (Pisces: Perciformes: Notothenioidei) of the Weddell Sea , 2003, Antarctic Science.

[30]  T. Kido,et al.  Scanning electron microscopic study of amphibians otoconia. , 1997, Auris, nasus, larynx.

[31]  S. Balshine,et al.  Otolith morphology varies between populations, sexes and male alternative reproductive tactics in a vocal toadfish Porichthys notatus. , 2017, Journal of fish biology.

[32]  A. Flock,et al.  Sensory Transduction in Hair Cells , 1971 .

[33]  A. Popper,et al.  Structure and Function of the Auditory System in the Clown Knifefish, Notopterus Chitala , 1982 .

[34]  F. Ladich,et al.  Acoustic communication in terrestrial and aquatic vertebrates , 2017, Journal of Experimental Biology.

[35]  K. Saruwatari,et al.  Control of Polymorphism and Morphology of Calcium Carbonate Crystals by a Matrix Protein Aggregate in Fish Otoliths , 2009 .

[36]  R. Fay Peripheral Adaptations for Spatial Hearing in Fish , 1988 .

[37]  Gustaf Retzius,et al.  Das Gehörorgan der Fische und Amphibien , 1881 .

[38]  Peter H. Rogers,et al.  Underwater Sound as a Biological Stimulus , 1988 .

[39]  Sonja J. Prohaska,et al.  Analysis of the African coelacanth genome sheds light on tetrapod evolution , 2013, Nature.

[40]  A. Popper Ultrastructure of the auditory regions in the inner ear of the lake whitefish. , 1976, Science.

[41]  M. Tsuboi,et al.  Phenotypic integration of brain size and head morphology in Lake Tanganyika Cichlids , 2014, BMC Evolutionary Biology.

[42]  H. Straka,et al.  Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies , 2013, Journal of Comparative Physiology A.

[43]  P. Krysl,et al.  Auditory chain reaction: Effects of sound pressure and particle motion on auditory structures in fishes , 2020, PloS one.

[44]  Xiaohong Deng,et al.  COMPARATIVE STUDIES ON THE STRUCTURE OF THE EARS OF DEEP-SEA FISHES , 2009 .

[45]  F. Ladich,et al.  Relationship between Swim Bladder Morphology and Hearing Abilities–A Case Study on Asian and African Cichlids , 2012, PloS one.

[46]  Florian Engert,et al.  The Tangential Nucleus Controls a Gravito-inertial Vestibulo-ocular Reflex , 2012, Current Biology.

[47]  B. Budelmann,et al.  Morphological Diversity of Equilibrium Receptor Systems in Aquatic Invertebrates , 1988 .

[48]  M. Burghammer,et al.  Control of Crystal Size and Lattice Formation by Starmaker in Otolith Biomineralization , 2003, Science.

[49]  C. Hawryshyn,et al.  Exposure to thyroid hormone in ovo affects otolith crystallization in rainbow trout Oncorhynchus mykiss , 2012, Environmental Biology of Fishes.

[50]  M. Pegg,et al.  The inner ear morphology and hearing abilities of the Paddlefish (Polyodon spathula) and the Lake Sturgeon (Acipenser fulvescens). , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[51]  A. Popper,et al.  Sciaenid Inner Ears: A Study in Diversity , 2002, Brain, Behavior and Evolution.

[52]  F. Marmo,et al.  Scanning electron microscopic and X-ray diffraction studies of otoconia in the lizard Podarcis s. sicula , 2004, Cell and Tissue Research.

[53]  A. Lombarte,et al.  An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology , 2014 .

[54]  R. Gauldie Function, form and time-keeping properties of fish otoliths , 1988 .

[55]  K. Frisch Über die Bedeutung des Sacculus und der Lagena für den Gehörsinn der Fische , 2004, Zeitschrift für vergleichende Physiologie.

[56]  B. Metscher,et al.  Sensory epithelia of the fish inner ear in 3D: studied with high-resolution contrast enhanced microCT , 2013, Frontiers in Zoology.

[57]  R. Fay,et al.  Computerized tomography of the otic capsule and otoliths in the oyster toadfish, Opsanus tau , 2015, Journal of morphology.

[58]  D. Mountain,et al.  Elastic Modulus of Cetacean Auditory Ossicles , 2014, Anatomical record.

[59]  R. A. Thornhill The development of the labyrinth of the lamprey (Lampetra fluviatilis Linn. 1758) , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[60]  Angel Amores,et al.  The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits , 2013, Nature Genetics.

[61]  P. F. Smith The Growing Evidence for the Importance of the Otoliths in Spatial Memory , 2019, Front. Neural Circuits.

[62]  A. Volpedo,et al.  Ecomorphological patterns of the lapilli of Paranoplatense Siluriforms (South America) , 2010 .

[63]  P. Krysl,et al.  Vibration of otolithlike scatterers due to low frequency harmonic wave excitation in water. , 2011 .

[64]  V. C. Barber,et al.  Scanning electron microscopic observations on the inner ear of the skate, Raja ocellata , 2004, Cell and Tissue Research.

[65]  J. Gray,et al.  Acousticolateralis System in Clupeid Fishes , 1981 .

[66]  O. Sand Directional sensitivity of microphonic potentials from the perch ear. , 1974, The Journal of experimental biology.

[67]  A. Hudspeth,et al.  Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[68]  F. Fürsich,et al.  Ecophenotypic Plasticity Versus Evolutionary Trends—Morphological Variability in Upper Jurassic Bivalve Shells from Portugal , 2010 .

[69]  Friedrich Ladich,et al.  Sound Production and Acoustic Communication , 2004 .

[70]  M. Ross,et al.  Utricular otoconia of some amphibians have calcitic morphology , 1993, Hearing Research.

[71]  L. A. Adams Some characteristic otoliths of American ostariophysi , 1940 .

[72]  R. Gauldie,et al.  The simultaneous occurrence of otoconia and otoliths in four teleost fish species , 1986 .

[73]  A. Lombarte,et al.  Otolith size trends in marine fish communities from different depth strata , 2007 .

[74]  T. Kido Identification of Calcitic and Aragonitic Otoconia by Selective Staining Methods , 1996 .

[75]  Morphology and microchemistry of the otoliths of the inner ear of anuran larvae , 2016, Hearing Research.

[76]  Zhongmin Lu,et al.  Acoustic response properties of lagenar nerve fibers in the sleeper goby, Dormitator latifrons , 2003, Journal of Comparative Physiology A.

[77]  B. Roe,et al.  Duplication and divergence of fgf8 functions in teleost development and evolution. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[78]  S. B. Parker,et al.  The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[79]  M. Vignon Disentangling and quantifying sources of otolith shape variation across multiple scales using a new hierarchical partitioning approach , 2015 .

[80]  S. Campana,et al.  Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? , 2001 .

[81]  Zhongmin Lu,et al.  Frequency coding of particle motion by saccular afferents of a teleost fish , 2010, Journal of Experimental Biology.

[82]  A. Popper,et al.  The effect of vaterite deposition on sound reception, otolith morphology, and inner ear sensory epithelia in hatchery-reared Chinook salmon (Oncorhynchus tshawytscha) , 2007 .

[83]  A. Popper,et al.  Structural variation in the inner ears of four deep‐sea elopomorph fishes , 2005, Journal of morphology.

[84]  A. Bass,et al.  Steroid-Dependent Auditory Plasticity Leads to Adaptive Coupling of Sender and Receiver , 2004, Science.

[85]  J. T. Corwin,et al.  Morphology of the macula neglecta in sharks of the genus Carcharhinus , 1977, Journal of morphology.

[86]  Y. T. Rebane,et al.  Otolith regularities , 2000, Hearing Research.

[87]  A. Tester,et al.  Morphology of the Ear of the Shark Genus Carcharhinus, with Particular Reference to the Macula Neglecta , 1972 .

[88]  L. S. Demski,et al.  Sensory Physiology and Behavior of Elasmobranchs , 2012 .

[89]  Mark Wilson,et al.  EXTRINSIC LABYRINTH INFILLINGS IMPLY OPEN ENDOLYMPHATIC DUCTS IN LOWER DEVONIAN OSTEOSTRACANS, ACANTHODIANS, AND PUTATIVE CHONDRICHTHYANS , 2001 .

[90]  T. Nicolson,et al.  The Zebrafish as a Genetic Model to Study Otolith Formation , 2005 .

[91]  R. Thompson,et al.  The otoliths of a chimaera, the New Zealand elephant fish Callorhynchus milii , 1987 .

[92]  Pascal Neige,et al.  Exploration of morphospace using Procrustes analysis in statoliths of cuttlefish and squid (Cephalopoda : Decabrachia) - Evolutionary aspects of form disparity , 2000 .

[93]  C. B. Braun,et al.  Evolution of Peripheral Mechanisms for the Enhancement of Sound Reception , 2008 .

[94]  S. Swearer,et al.  High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish , 2016, Scientific Reports.

[95]  M. R. Clarke POTENTIAL OF STATOLITHS FOR INTERPRETING COLEOID EVOLUTION: A BRIEF REVIEW , 2004 .

[96]  D. Poggendorf Die absoluten Hörschwellen des Zwergwelses (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen , 1952, Zeitschrift für vergleichende Physiologie.

[97]  A. Lombarte,et al.  Morphology and ultrastructure of saccular otoliths from five species of the genus Coelorinchus (Gadiformes: Macrouridae) from the Southeast Atlantic , 1995, Journal of morphology.

[98]  C. Platt Hair cell distribution and orientation in goldfish otolith organs , 1977, The Journal of comparative neurology.

[99]  Are accessory hearing structures linked to inner ear morphology? Insights from 3D orientation patterns of ciliary bundles in three cichlid species , 2014, Frontiers in Zoology.

[100]  R. Gauldie Polymorphic crystalline structure of fish otoliths , 1993, Journal of morphology.

[101]  T. Furukawa,et al.  Neurophysiological studies on hearing in goldfish. , 1967, Journal of neurophysiology.

[102]  Arthur N. Popper,et al.  Bioacoustics of Fishes of the Family Sciaenidae (Croakers and Drums) , 2006 .

[103]  A. Lombarte,et al.  Otolith atlas for the western Mediterranean, north and central eastern Atlantic , 2008 .

[104]  S. Baxendale,et al.  Zebrafish Inner Ear Development and Function , 2014 .

[105]  Nicolas Bailly,et al.  Phylogenetic classification of bony fishes , 2017, BMC Evolutionary Biology.

[106]  R. Anken,et al.  Vesicular bodies in fish maculae are artifacts not contributing to otolith growth , 2001, Hearing Research.

[107]  R. Fay,et al.  Directional response properties of saccular afferents of the toadfish, Opsanus tau , 1997, Hearing Research.

[108]  S. Ludsin,et al.  Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths , 2005 .

[109]  R. Fay,et al.  Physiological evidence for binaural directional computations in the brainstem of the oyster toadfish, Opsanus tau (L.) , 2009, Journal of Experimental Biology.

[110]  G. Triantafyllou,et al.  Disentangling the effects of inherent otolith growth and model-simulated ecosystem parameters on the daily growth rate of young anchovies , 2014 .

[111]  P. Krysl,et al.  Angular Oscillation of Solid Scatterers in Response to Progressive Planar Acoustic Waves: Do Fish Otoliths Rock? , 2012, PloS one.

[112]  Young‐Jin Kang,et al.  Sparc Protein Is Required for Normal Growth of Zebrafish Otoliths , 2008, Journal of the Association for Research in Otolaryngology.

[113]  Anthony D. Hawkins,et al.  An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes† , 2019, Journal of fish biology.

[114]  B. Avallone,et al.  Morphogenesis of otoliths during larval development in brook lamprey, Lampetra planeri , 2007 .

[115]  Christopher Platt,et al.  Sound Detection Mechanisms and Capabilities of Teleost Fishes , 2003 .

[116]  A. Hudspeth,et al.  Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[117]  E. Yamoah,et al.  Assembly of the otoconia complex to the macular sensory epithelium of the vestibule , 2006, Brain Research.

[118]  R Thalmann,et al.  The otoconia of the guinea pig utricle: internal structure, surface exposure, and interactions with the filament matrix. , 2000, Journal of structural biology.

[119]  C. Trueman,et al.  Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[120]  M. Greene,et al.  Identification of a structural constituent and one possible site of postembryonic formation of a teleost otolithic membrane. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[121]  H. Schultze Notes on the Structure and Phylogeny of Vertebrate Otoliths , 1988 .

[122]  A. Lombarte,et al.  Otolith size and its relationship with colour patterns and sound production , 2004 .

[123]  C. Assis The utricular otoliths, lapilli , of teleosts: their morphology and relevance for species identification and systematics studies , 2005 .

[124]  Anthony D. Hawkins,et al.  Underwater Sound and Fish Behaviour , 1986 .

[125]  H. Nagasawa,et al.  Immunohistochemical localization of two otolith matrix proteins in the otolith and inner ear of the rainbow trout, Oncorhynchus mykiss: comparative aspects between the adult inner ear and embryonic otocysts , 2004, Histochemistry and Cell Biology.

[126]  R. Fay,et al.  "Large" Tank Acoustics: How Big Is Big Enough? , 2016, Advances in experimental medicine and biology.

[127]  T. Akamatsu,et al.  Contribution to the Understanding of Particle Motion Perception in Marine Invertebrates. , 2016, Advances in experimental medicine and biology.

[128]  A. Mensinger,et al.  Directional sound sensitivity in utricular afferents in the toadfish Opsanus tau , 2015, The Journal of Experimental Biology.

[129]  O. Aguilera,et al.  Otoliths of the Sciaenidae from the Neogene of tropical America , 2016 .

[130]  Ashley M. Fowler,et al.  Beyond the transect: an alternative microchemical imaging method for fine scale analysis of trace elements in fish otoliths during early life. , 2014, The Science of the total environment.

[131]  L. Jawad THE DIVERSITY OF FISH OTOLITHS PAST AND PRESENT , 2014 .

[132]  A. Lombarte,et al.  Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus , 1999 .

[133]  J. Dean,et al.  The ultrastructure of the otolithic membrane and otolith in the juvenile mummichog, Fundulus heteroclitus , 1980, Journal of morphology.

[134]  Alexander V Kondrachuk Models of otolithic membrane–hair cell bundle interaction , 2002, Hearing Research.

[135]  S. Sanchez,et al.  The origin of novel features by changes in developmental mechanisms: ontogeny and three‐dimensional microanatomy of polyodontode scales of two early osteichthyans , 2017, Biological reviews of the Cambridge Philosophical Society.

[136]  D. Ornitz,et al.  Mixing model systems: Using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development , 2006, Brain Research.

[137]  V. C. Barber,et al.  Scanning electron microscopical studies of the arrangements and numbers of hair cells in the statocysts of Octopus vulgaris, Sepia officinalis and Loligo vulgaris. , 1973, Brain research.

[138]  D. Carlström A CRYSTALLOGRAPHIC STUDY OF VERTEBRATE OTOLITHS , 1963 .

[139]  G. Manley Cochlear mechanisms from a phylogenetic viewpoint. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[140]  A. M. Schreiber,et al.  Thyroid hormone-responsive genes mediate otolith growth and development during flatfish metamorphosis. , 2011, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[141]  H. Schultze,et al.  An Early Devonian (Emsian) acanthodian from the Bear Rock Formation, Anderson River, Northwest Territories, Canada , 2002 .

[142]  A. Flock,et al.  STRUCTURE OF THE MACULA UTRICULI WITH SPECIAL REFERENCE TO DIRECTIONAL INTERPLAY OF SENSORY RESPONSES AS REVEALED BY MORPHOLOGICAL POLARIZATION , 1964, The Journal of cell biology.

[143]  Alec J. Duncan,et al.  Issues associated with sound exposure experiments in tanks , 2016 .

[144]  Michal L. Jones,et al.  Validation of a relationship between statolith size and age of larval Great Lakes sea lamprey (Petromyzon marinus) , 2015, Environmental Biology of Fishes.

[145]  Terry. Grande,et al.  Fishes of the World: Nelson/Fishes of the World , 2016 .

[146]  R. Fay,et al.  Parvulescu Revisited: Small Tank Acoustics for Bioacousticians. , 2016, Advances in experimental medicine and biology.

[147]  P. Beznosov A redescription of the Early Carboniferous acanthodian Acanthodes lopatini Rohon, 1889 , 2009 .

[148]  S. Campana,et al.  Microstructure of Fish Otoliths , 1985 .

[149]  G. Adami,et al.  Mineralogy and geochemistry of otoliths in freshwater fish from Northern Italy , 2006 .

[150]  G. Ortí,et al.  Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution , 2013, PLoS currents.

[151]  E. Balan,et al.  New Insights in the Ontogeny and Taphonomy of the Devonian Acanthodian Triazeugacanthus affinis From the Miguasha Fossil-Lagerstätte, Eastern Canada , 2015 .

[152]  Sheryl Coombs,et al.  The Morphology and Evolution of the Ear in Actinopterygian Fishes , 1982 .

[153]  M. Ross,et al.  Some properties of otoconia. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[154]  Tomonari Akamatsu,et al.  Underwater sound detection by cephalopod statocyst , 2008, Fisheries Science.

[155]  Zongbin Cui,et al.  Claudin7b is required for the formation and function of inner ear in zebrafish , 2018, Journal of cellular physiology.

[156]  A. Lombarte,et al.  Application of otolith mass and shape for discriminating scabbardfishes Aphanopus spp. in the north-eastern Atlantic Ocean. , 2013, Journal of fish biology.

[157]  R. Fay,et al.  Auditory evoked potential audiometry in fish , 2013, Reviews in Fish Biology and Fisheries.

[158]  R. Beamish,et al.  Crystalline otoliths in teleosts: Comparisons between hatchery and wild coho salmon (Oncorhynchus kisutch) in the Strait of Georgia , 2004, Reviews in Fish Biology and Fisheries.

[159]  J. Paxton,et al.  Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[160]  Philip C J Donoghue,et al.  Genome duplication, extinction and vertebrate evolution. , 2005, Trends in ecology & evolution.

[161]  S. Weigmann,et al.  Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. , 2016, Journal of fish biology.

[162]  K. Limburg,et al.  Insights from two-dimensional mapping of otolith chemistry. , 2017, Journal of fish biology.

[163]  Juan I. Young,et al.  Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. , 2012, American journal of human genetics.

[164]  F. Ladich,et al.  Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes , 2008, Journal of Experimental Biology.

[165]  Y. Takagi Meshwork arrangement of mitochondria‐rich, Na+,K+‐ATPase‐rich cells in the saccular epithelium of rainbow trout (Oncorhynchus mykiss) inner ear , 1997, The Anatomical record.

[166]  A. Lombarte,et al.  New parameterisation method for three-dimensional otolith surface images , 2016 .

[167]  Thaine W. Rowley,et al.  The Tree of Life and a New Classification of Bony Fishes , 2013, PLoS currents.

[168]  A. Michelsen,et al.  Vibration measurements of the perch saccular otolith , 1978, Journal of comparative physiology.

[169]  A. Packard,et al.  Low frequency hearing in cephalopods , 1990, Journal of Comparative Physiology A.

[170]  F. Ladich,et al.  A comparative study of hearing ability in fishes: the auditory brainstem response approach , 1998, Journal of Comparative Physiology A.

[171]  D. Nelson,et al.  Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths , 1988 .

[172]  T. Wohlfahrt Das ohrlabyrinth der sardine (clupea pilchardus walb.) und seine beziehungen zur schwimmblase und seitenlinie , 1936, Zeitschrift für Morphologie und Ökologie der Tiere.

[173]  R. Fay,et al.  Modes of stimulation of the teleost ear. , 1975, The Journal of experimental biology.

[174]  M. Farina,et al.  Vaterite, calcite, and aragonite in the otoliths of three species of piranha , 1996, Naturwissenschaften.

[175]  Christopher Platt,et al.  The inner ear of the lungfish Protopterus , 2004, The Journal of comparative neurology.

[176]  F. Marmo,et al.  Calcite in the statoconia of amphibians: A detailed analysis in the frog Rana esculenta , 2004, Cell and Tissue Research.

[177]  C. Platt Zebrafish inner ear sensory surfaces are similar to those in goldfish , 1993, Hearing Research.

[178]  Bernd Fritzsch Inner ear of the coelacanth fish Latimeria has tetrapod affinities , 1987, Nature.

[179]  R. Gauldie Vaterite Otoliths from the Opah, Lampris immaculatus, and Two Species of Sunfish, Mola mola and M. ramsayi , 1990 .

[180]  R. Gauldie,et al.  The Biological Significance of the Variation in Crystalline Morph and Habit of Otoconia in Elasmobranchs , 1989 .

[181]  A. Popper,et al.  Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. , 1987, Brain, behavior and evolution.

[182]  E. Rosauer,et al.  Comparative crystallography of vertebrate otoconia , 1985, The Journal of Laryngology & Otology.

[183]  B. Kachar,et al.  Development and Maintenance of Otoconia , 2001 .

[184]  A. Lombarte,et al.  Otolith patterns of rockfishes from the northeastern pacific , 2015, Journal of morphology.

[185]  B. Riley,et al.  Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. , 2000, Journal of neurobiology.

[186]  P. Rogers,et al.  Multipole Mechanisms for Directional Hearing in Fish , 2008 .

[187]  A. Popper,et al.  A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes , 1977, Journal of morphology.

[188]  S. Campana,et al.  Chemical Composition of Fish Hard Parts as a Natural Marker of Fish Stocks , 2014 .

[189]  A J Hudspeth,et al.  The cellular basis of hearing: the biophysics of hair cells. , 1985, Science.

[190]  Julie B. Schuck,et al.  Structural and functional effects of acoustic exposure in goldfish: evidence for tonotopy in the teleost saccule , 2011, BMC Neuroscience.

[191]  G. Manley Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears , 2017, Journal of the Association for Research in Otolaryngology.

[192]  D. Ketten,et al.  Form and function in the unique inner ear of a teleost: The silver perch (Bairdiella chrysoura) , 2004, The Journal of comparative neurology.

[193]  Martha W. Bagnall,et al.  Delayed Otolith Development Does Not Impair Vestibular Circuit Formation in Zebrafish , 2017, Journal of the Association for Research in Otolaryngology.

[194]  J. Long,et al.  Ontogenetic Development of Otoliths in Alligator Gar , 2016 .

[195]  J. Maisey Notes on the structure and phylogeny of vertebrate otoliths , 1987 .

[196]  A. Popper,et al.  Sensory surface of the saccule and lagena in the ears of ostariophysan fishes , 1983, Journal of morphology.

[197]  C. Fulton,et al.  All in the ears: unlocking the early life history biology and spatial ecology of fishes , 2016, Biological reviews of the Cambridge Philosophical Society.

[198]  B. Gillanders,et al.  Otoliths in archaeology: Methods, applications and future prospects , 2016 .

[199]  F. Ladich,et al.  Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae) , 2010, Hearing Research.

[200]  A. Girone,et al.  Fish otolith assemblages from Recent NE Atlantic sea bottoms: A comparative study of palaeoecology , 2016 .

[201]  A. Popper,et al.  The ultrastructure and innervation of the ear of the gar, Lepisosteus osseus , 1987, Journal of morphology.

[202]  H. Lowenstam,et al.  Minerals formed by organisms. , 1981, Science.

[203]  T. Whitfield Cilia in the developing zebrafish ear , 2019, Philosophical Transactions of the Royal Society B.

[204]  R. Gauldie Fusion of Otoconia: a Stage in the Development of the Otolith in the Evolution of Fishes , 1996 .

[205]  Sheng-Ping L. Hwang,et al.  Zona Pellucida Domain-Containing Protein β-Tectorin is Crucial for Zebrafish Proper Inner Ear Development , 2011, PloS one.

[206]  A. Lombarte,et al.  The origination and rise of teleost otolith diversity during the Mesozoic , 2017 .

[207]  Jakob Christensen-Dalsgaard,et al.  Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods , 2015, Journal of Experimental Biology.

[208]  L. Chao A basis for classifying western Atlantic Sciaendiae (Teleostei: Perciformes) , 1978 .

[209]  A. Tombari,et al.  Eco-morphological patterns of the sagitta of Antarctic fish , 2008, Polar Biology.

[210]  J. Spires,et al.  Hearing in damselfishes: An analysis of signal detection among closely related species , 1980, Journal of comparative physiology.

[211]  A. Popper,et al.  Audition in sciaenid fishes with different swim bladder-inner ear configurations. , 2006, The Journal of the Acoustical Society of America.

[212]  R. Anken On the role of the central nervous system in regulating the mineralisation of inner-ear otoliths of fish , 2006, Protoplasma.

[213]  S. Dijkgraaf Über die Schallwahrnehmung bei Meeresfischen , 1952, Zeitschrift für vergleichende Physiologie.

[214]  J. Lewis,et al.  Early ear development in the embryo of the Zebrafish, Danio rerio , 1996, The Journal of comparative neurology.

[215]  M. Hanson,et al.  The Role of Magnetic Statoconia in Dogfish (Squalus Acanthias) , 1990 .

[216]  Naoum P. Issa,et al.  Hair-bundle stiffness dominates the elastic reactance to otolithic-membrane shear , 1993, Hearing Research.

[217]  A. Németh,et al.  Fusiform Vateritic Inclusions Observed in European Eel (Anguilla Anguilla L.) Sagittae , 2017, Acta biologica Hungarica.

[218]  J. Sisneros Saccular potentials of the vocal plainfin midshipman fish, Porichthys notatus , 2007, Journal of Comparative Physiology A.

[219]  Advances and Perspectives in the Study of the Evolution of the Vertebrate Auditory System , 2004 .

[220]  D. Allemand,et al.  Composition of Biomineral Organic Matrices with Special Emphasis on Turbot (Psetta maxima) Otolith and Endolymph , 2003, Calcified Tissue International.

[221]  J. Clack Otoliths in fossil coelacanths , 1996 .

[222]  David A. Baltzegar,et al.  Phylogenetic revision of the claudin gene family. , 2013, Marine genomics.

[223]  W. Grant,et al.  Biomechanical measurement of kinocilium. , 2013, Methods in enzymology.

[224]  O. Lowenstein,et al.  The labyrinth of Myxine: anatomy, ultrastructure and electrophysiology , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[225]  Richard R. Fay,et al.  Sound Detection and Processing by Fish: Critical Review and Major Research Questions (Part 1 of 2) , 1993 .

[226]  M. Tekin,et al.  Hearing Assessment in Zebrafish During the First Week Postfertilization. , 2016, Zebrafish.

[227]  R. Fay,et al.  Acoustic stimulation of the ear of the goldfish (Carassius auratus). , 1974, The Journal of experimental biology.

[228]  R. Gauldie,et al.  The remarkable lungfish otolith , 1986 .

[229]  H. Vries,et al.  The mechanics of the labyrinth otoliths. , 1950 .

[230]  S. Swearer,et al.  Trace element-protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. , 2017, Metallomics : integrated biometal science.

[231]  M. Fine,et al.  Variability in the role of the gasbladder in fish audition , 2000, Journal of Comparative Physiology A.

[232]  Christopher Platt,et al.  Fine Structure and Function of the Ear , 1981 .

[233]  F. Ladich,et al.  Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations. , 2016, Advances in experimental medicine and biology.

[234]  A. Lombarte,et al.  Phenotypic plasticity in wild marine fishes associated with fish-cage aquaculture , 2015, Hydrobiologia.

[235]  J. Wersäll,et al.  Structure and innervation of the sensory epithelia of the labyrinth in the Thornback ray (Raja clavata) , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[236]  U. Siebeck,et al.  A comparison of the external morphology of the membranous inner ear in elasmobranchs , 2010, Journal of morphology.

[237]  Zhongmin Lu,et al.  Early Development of Hearing in Zebrafish , 2013, Journal of the Association for Research in Otolaryngology.

[238]  T. N. Kenyon Ontogenetic changes in the auditory sensitivity of damselfishes (pomacentridae) , 1996, Journal of Comparative Physiology A.

[239]  G. Boeuf,et al.  Ultrastructural study of the saccular epithelium of the inner ear of two teleosts, Oncorhynchus mykiss and Psetta maxima , 1998, Cell and Tissue Research.

[240]  L. Angeletti,et al.  Fish otoliths in superficial sediments of the Mediterranean Sea , 2017 .

[241]  P H Rogers,et al.  Processing of acoustic signals in the auditory system of bony fish. , 1988, The Journal of the Acoustical Society of America.

[242]  C. Assis The lagenar otoliths of teleosts: their morphology and its application in species identification, phylogeny and systematics , 2003 .

[243]  M. Heß,et al.  Inner Ear Morphology in the Atlantic Molly Poecilia mexicana—First Detailed Microanatomical Study of the Inner Ear of a Cyprinodontiform Species , 2011, PloS one.

[244]  Z. Lu,et al.  Effects of saccular otolith removal on hearing sensitivity of the sleeper goby (Dormitator latifrons) , 2002, Journal of Comparative Physiology A.

[245]  R. Fay,et al.  The effects of temperature change and transient hypoxia on auditory nerve fiber response in the goldfish (Carassius auratus) , 1992, Hearing Research.

[246]  A. Lombarte,et al.  Testing otolith morphology for measuring marine fish biodiversity , 2016 .

[247]  R. Northcutt,et al.  Structure and innervation of the inner ear of the bowfin, Amia calva , 1983, The Journal of comparative neurology.

[248]  Joseph A Sisneros,et al.  Directional Hearing and Sound Source Localization in Fishes. , 2016, Advances in experimental medicine and biology.

[249]  A. Popper,et al.  Encoding of acoustic directional information by saccular afferents of the sleeper goby, Dormitator latifrons , 1998, Journal of Comparative Physiology A.

[250]  R. Cowen,et al.  Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function , 2013, Proceedings of the National Academy of Sciences.

[251]  M. Olbinado,et al.  In-situ visualization of sound-induced otolith motion using hard X-ray phase contrast imaging , 2018, Scientific Reports.

[252]  D. Ketten,et al.  Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure , 2010, Journal of Experimental Biology.

[253]  P. Steyger,et al.  The morphogenic features of otoconia during larval development of Cynops pyrrhogaster, the Japanese red-bellied newt , 1995, Hearing Research.

[254]  F. Ladich,et al.  Parallel Evolution in Fish Hearing Organs , 2004 .

[255]  P. Edds-Walton What the Toadfish Ear Tells the Toadfish Brain About Sound. , 2016, Advances in experimental medicine and biology.

[256]  A. Geffen,et al.  Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations , 2003 .

[257]  Leonardo A. Venerus,et al.  Otolith shape lends support to the sensory drive hypothesis in rockfishes , 2016, Journal of evolutionary biology.

[258]  H. Schultze A new acanthodian from the Pennsylvanian of Utah, U.S.A., and the distribution of otoliths in gnathostomes , 1990 .

[259]  J. Panfili,et al.  Effects of different food restrictions on somatic and otolith growth in Nile tilapia reared under controlled conditions , 2002 .

[260]  S. Neuhauss,et al.  Whole-genome duplication in teleost fishes and its evolutionary consequences , 2014, Molecular Genetics and Genomics.

[261]  J. Sisneros,et al.  Saccular-Specific Hair Cell Addition Correlates with Reproductive State-Dependent Changes in the Auditory Saccular Sensitivity of a Vocal Fish , 2012, The Journal of Neuroscience.

[262]  C. Dournon,et al.  Crystallographic and chemical composition of otoconia in the salamander Pleurodeles waltl , 1999, Hearing Research.

[263]  H. DE VRIES,et al.  The mechanics of the labyrinth otoliths. , 1951, Acta Oto-Laryngologica.

[264]  A. Popper,et al.  Structure of the inner ear of bluefin tuna Thunnus thynnus , 2006 .

[265]  Jaume Piera,et al.  A web-based environment for shape analysis of fish otoliths. The AFORO database , 2006 .

[266]  A N Popper,et al.  Evolution of the ear and hearing: issues and questions. , 1997, Brain, behavior and evolution.

[267]  R. Fay The goldfish ear codes the axis of acoustic particle motion in three dimensions. , 1984, Science.

[268]  A. Lombarte,et al.  Differences in morphological features of the sacculus of the inner ear of two hakes (Merluccius capensis and M. paradoxus, gadiformes) inhabits from different depth of sea , 1992, Journal of morphology.

[269]  A. M. Schreiber,et al.  Thyroid hormone mediates otolith growth and development during flatfish metamorphosis. , 2010, General and comparative endocrinology.

[270]  F. Ladich Diversity in Hearing in Fishes: Ecoacoustical, Communicative, and Developmental Constraints , 2013 .

[271]  Y. Oda,et al.  The role of ear stone size in hair cell acoustic sensory transduction , 2013, Scientific Reports.

[272]  G. Manley,et al.  Evolution of Sensory Hair Cells , 2004 .

[273]  M. Vignon,et al.  Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. , 2010 .

[274]  A. Lombarte,et al.  Otolith size changes related with body growth, habitat depth and temperature , 1993, Environmental Biology of Fishes.

[275]  E. Libowitzky,et al.  Morphology and evolutionary significance of phosphatic otoliths within the inner ears of cartilaginous fishes (Chondrichthyes) , 2019, BMC Evolutionary Biology.

[276]  A. Popper,et al.  The Inner Ear and its Coupling to the Swim Bladder in the Deep-Sea Fish Antimora rostrata (Teleostei: Moridae). , 2011, Deep-sea research. Part I, Oceanographic research papers.

[277]  Peter H. Rogers,et al.  Threshold of hearing for swimming Bluefin tuna (Thunnus orientalis) , 2013 .

[278]  A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study , 2013, BMC Biology.

[279]  Faster than the speed of hearing: nanomechanical force probes enable the electromechanical observation of cochlear hair cells. , 2012, Nano letters.

[280]  B. Gillanders,et al.  Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments. , 2015, Journal of fish biology.

[281]  B. Avallone,et al.  Scanning Electron Microscopy and X‐ray Diffraction Studies of the Macular Crystals in the Chondrostean Fish Erpetoichthys calabaricus (Smith) , 1992 .

[282]  S. Malavasi,et al.  Sound production mechanism in Gobius paganellus (Gobiidae) , 2013, Journal of Experimental Biology.

[283]  R. Fay,et al.  Vibration detection by the macula neglecta of sharks. , 1974, Comparative biochemistry and physiology. A, Comparative physiology.

[284]  A. Popper Scanning electron microscopic study of the sacculus and lagena in several deep-sea fishes. , 1980, The American journal of anatomy.

[285]  D. Lychakov Evolution of Otolithic Membrane. Structure of Otolithic Membrane in Amphibians and Reptilians , 2004, Journal of Evolutionary Biochemistry and Physiology.

[286]  S. Dijkgraaf Über die Bedeutung der Weberschen Knöchel für die Wahrnehmung von Schwankungen des hydrostatischen Druckes , 2004, Zeitschrift für vergleichende Physiologie.

[287]  M. Taylor,et al.  Otoconia biogenesis, phylogeny, composition and functional attributes. , 1998, Histology and histopathology.

[288]  K. Hama A study on the fine structure of the saccular macula of the gold fish , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[289]  J. Smith,et al.  The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications , 2015, Genome research.

[290]  U. Thurm,et al.  Surface charges of the membrane and cell adhesion substances determine the structural integrity of hair bundles from the inner ear of fish , 1987, Cell and Tissue Research.

[291]  L. E. Wysocki,et al.  How does tripus extirpation affect auditory sensitivity in goldfish? , 2003, Hearing Research.

[292]  R. Anken,et al.  Fish inner ear otoliths stop calcium incorporation after vestibular nerve transection , 2000, Neuroreport.

[293]  J. Musick,et al.  Acoustic pressure and particle motion thresholds in six sciaenid fishes , 2008, Journal of Experimental Biology.

[294]  F. Ramírez,et al.  Diet of bottlenose dolphins (Tursiops truncatus) from the Gulf of Cadiz: Insights from stomach content and stable isotope analyses , 2017, PloS one.

[295]  G. Pannella Fish Otoliths: Daily Growth Layers and Periodical Patterns , 1971, Science.

[296]  F. Ladich DID AUDITORY SENSITIVITY AND SOUND PRODUCTION EVOLVE INDEPENDENTLY IN FISHES? , 2002 .

[297]  A. Lombarte Changes in otolith area: sensory area ratio with body size and depth , 1992, Environmental Biology of Fishes.

[298]  K. Frisch,et al.  Unterbuchungen über den Sitz des Géhörsinnes bei der Elritze , 1932, Zeitschrift für vergleichende Physiologie.

[299]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[300]  M. Goldstein,et al.  Cupular movement and nerve impulse response in the isolated semicircular canal , 1978, Brain Research.

[301]  Arthur N. Popper,et al.  Auditory response of saccular neurons of the catfish,Ictalurus punctatus , 1984, Journal of Comparative Physiology A.

[302]  U. Müller,et al.  Mechanotransduction by Hair Cells: Models, Molecules, and Mechanisms , 2009, Cell.

[303]  M. Farina,et al.  Structural basis for mechanical transduction in the frog vestibular sensory apparatus: III. The organization of the otoconial mass , 1999, Hearing Research.

[304]  S. Saitoh,et al.  Ultrastructure of the saccular epithelium and the otolithic membrane in relation to otolith growth in Tilapia, Oreochromis niloticus (Teleostei: Cichlidae) , 1989 .

[305]  K. L. Kramer,et al.  Mechanisms of otoconia and otolith development , 2015, Developmental dynamics : an official publication of the American Association of Anatomists.

[306]  R. Cloutier Tissue Substitutes in Radiation Dosimetry and Measurement. , 1989 .

[307]  P. Krysl,et al.  Fin Whale Sound Reception Mechanisms: Skull Vibration Enables Low-Frequency Hearing , 2015, PloS one.

[308]  M. Lisowski,et al.  Starmaker exhibits properties of an intrinsically disordered protein. , 2008, Biomacromolecules.

[309]  H. Esmaeili,et al.  Geographical differentiation of Aphanius dispar (Teleostei: Cyprinodontidae) from Southern Iran , 2012 .

[310]  A. Popper,et al.  Quantitative changes in the otolithic organs of the inner ear during the settlement period in European hake Merluccius merluccius , 2004 .

[311]  Y. T. Rebane,et al.  Fish otolith mass asymmetry: morphometry and influence on acoustic functionality , 2005, Hearing Research.

[312]  G. Whitledge,et al.  Sturgeon and paddlefish (Acipenseridae) sagittal otoliths are composed of the calcium carbonate polymorphs vaterite and calcite. , 2017, Journal of fish biology.

[313]  J. T. Corwin,et al.  The auditory brain stem response in five vertebrate classes. , 1982, Electroencephalography and clinical neurophysiology.

[314]  P. Janvier,et al.  Hardistiella montanensis n. gen. et sp. (Petromyzontida) from the Lower Carboniferous of Montana, with remarks on the affinities of the lampreys , 1983 .

[315]  Arthur N. Popper,et al.  Functional Aspects of the Evolution of the Auditory System of Actinopterygian Fish , 1992 .

[316]  A. Herrel,et al.  Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus) , 2014, Journal of Experimental Biology.

[317]  B. Avallone,et al.  Morphological and biochemical analyses of otoliths of the ice‐fish Chionodraco hamatus confirm a common origin with red‐blooded species , 2009, Journal of anatomy.

[318]  J. Ghanbaja,et al.  Appearance and evolution of calcitic and aragonitic otoconia during Pleurodeles waltl development , 1999, Hearing Research.

[319]  S. Baxendale,et al.  Otolith tethering in the zebrafish otic vesicle requires Otogelin and α-Tectorin , 2015, Development.

[320]  F. Ladich Acoustic communication and the evolution of hearing in fishes. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[321]  Jingbing Xue,et al.  Hair bundle heights in the utricle: differences between macular locations and hair cell types. , 2006, Journal of neurophysiology.

[322]  M. Plath,et al.  Effects of extreme habitat conditions on otolith morphology: a case study on extremophile live bearing fishes (Poecilia mexicana, P. sulphuraria). , 2011, Zoology.

[323]  S. Burgess,et al.  The zebrafish gene claudinj is essential for normal ear function and important for the formation of the otoliths , 2005, Mechanisms of Development.

[324]  G. Falini,et al.  Influence on the Formation of Aragonite or Vaterite by Otolith Macromolecules , 2005 .

[325]  N. Chao Two new species of Stellifer from inshore waters of the eastern Pacific, with a redescription of S. ephelis (Perciformes: Sciaenidae). , 2001, Revista de biologia tropical.

[326]  Z. Lu,et al.  Coding of acoustic particle motion by utricular fibers in the sleeper goby, Dormitator latifrons , 2004, Journal of Comparative Physiology A.

[327]  H. Svedäng,et al.  Uncoupling of Somatic and Otolith Growth Rates in Arctic Char (Salvelinus alpinus) as an Effect of Differences in Temperature Response , 1988 .

[328]  F. Ladich,et al.  Diversity in Fish Auditory Systems: One of the Riddles of Sensory Biology , 2016, Front. Ecol. Evol..

[329]  Peter C Wainwright,et al.  The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. , 2012, Systematic biology.

[330]  Ralf Anken,et al.  Clinorotation Increases the Growth of Utricular Otoliths of Developing Cichlid Fish , 2010 .

[331]  B. Avallone,et al.  The otoliths of the antarctic teleost Trematomus bernacchii: scanning electron microscopy and X-ray diffraction studies. , 2003, Journal of submicroscopic cytology and pathology.

[332]  G. Carnevale,et al.  Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part I: Atherina suchovi Switchenska, 1973 , 2017, Swiss Journal of Palaeontology.

[333]  J. T. Corwin,et al.  Functional anatomy of the auditory system in sharks and rays , 1989 .

[334]  A. Popper,et al.  Interspecific Variations of Inner Ear Structure in the Deep‐Sea Fish Family Melamphaidae , 2013, Anatomical record.

[335]  B. Bulog Tectorial structures on the inner ear sensory epithelia of Proteus anguinus (Amphibia, caudata) , 1989, Journal of morphology.

[336]  S. Campana Chemistry and composition of fish otoliths : pathways, mechanisms and applications , 1999 .

[337]  A. Bass,et al.  HEARING AND LATERAL LINE | Vocal Behavior of Fishes: Anatomy and Physiology , 2011 .

[338]  J. W. Grant,et al.  Turtle utricle dynamic behavior using a combined anatomically accurate model and experimentally measured hair bundle stiffness , 2014, Hearing Research.

[339]  J. Aguzzi,et al.  Sensory constraints in temporal segregation in two species of anglerfish, Lophius budegassa and L. piscatorius , 2010 .

[340]  T. Whitfield,et al.  The developing lamprey ear closely resembles the zebrafish otic vesicle: otx1 expression can account for all major patterning differences , 2006, Development.

[341]  R. Fay,et al.  Auditory Evoked Potential Audiograms Compared with Behavioral Audiograms in Aquatic Animals. , 2016, Advances in experimental medicine and biology.