The Effect Magnet Design on Controlling the Target Erosion Profile for DC Magnetron with the Rectangular Target

[1]  Jacob C. Stephens,et al.  Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial , 2021, Atoms.

[2]  Shibo Bi,et al.  Prediction of midfrequency sputtering cathode erosion position with vertical magnetic field , 2020 .

[3]  K. Kim,et al.  Effect of Magnetic Field Arrangement of Facing Targets Sputtering (FTS) System on Controlling Plasma Confinement , 2020 .

[4]  C. Mitterer,et al.  Linking erosion and sputter performance of a rotatable Mo target to microstructure and properties of the deposited thin films , 2018, Surface and Coatings Technology.

[5]  S. Dew,et al.  Comprehensive computer model for magnetron sputtering. II. Charged particle transport , 2014 .

[6]  D. Holec,et al.  Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5 , 2012, 1212.4089.

[7]  Z. Ristivojevic,et al.  A Monte Carlo simulation of ion transport at finite temperatures , 2008, 0806.0401.

[8]  F. Yun Computer simulation of the target etching characteristics in magnetron sputtering , 2012 .

[9]  B. Szyszka,et al.  Simulation of plasma potential and ion energies in magnetron sputtering , 2011 .

[10]  H. Sawin,et al.  Modeling of the angular dependence of plasma etching , 2009 .

[11]  A. Solov'ev,et al.  Investigation of plasma characteristics in an unbalanced magnetron sputtering system , 2009 .

[12]  Kun Liu,et al.  The microstructure and wettability of the TiOx films synthesized by reactive DC magnetron sputtering , 2009 .

[13]  Yunpeng Yin,et al.  Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma , 2008 .

[14]  V. S. Raghunathan,et al.  Influence of nitrogen flow rate on growth of TiAlN films prepared by DC magnetron sputtering , 2007 .

[15]  V. Mitin,et al.  High deposition rate magnetrons: key elements and advantages , 2006 .

[16]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[17]  D. Depla,et al.  Monte Carlo Simulation of Anomalous Erosion in Large Area Sputter Magnetrons , 2005 .

[18]  D. Depla,et al.  Calculation of the effective gas interaction probabilities of the secondary electrons in a dc magnetron discharge , 2004 .

[19]  M. Yehya,et al.  Novel Enhanced Magnetron Sputtering System , 2004 .

[20]  W. Lee,et al.  Multi-scale simulation of plasma generation and film deposition in a circular type DC magnetron sputtering system , 2005 .

[21]  J. Gracio,et al.  A cross-corner effect in a rectangular sputtering magnetron , 2003 .

[22]  Jae Koo Lee,et al.  Modeling of magnetron sputtering plasmas , 2002 .

[23]  S. Ejima,et al.  Magnetic dome configuration for magnetron sputtering , 2001 .

[24]  T. Nomura,et al.  An anomalous erosion of a rectangular magnetron system , 2000 .

[25]  Mohamed Henini,et al.  Handbook of Thin-Film Deposition Processes and Techniques , 2000 .

[26]  J. Rabalais Low energy ion-surface interactions , 1994 .

[27]  M. S. J. Hashmi,et al.  Magnetic fields in magnetron sputtering systems , 1993 .

[28]  D. J. Economou,et al.  Fluid simulations of glow discharges: Effect of metastable atoms in argon , 1993 .

[29]  R. R. Parsons,et al.  Magnetic field and substrate position effects on the ion/deposition flux ratio in magnetron sputtering , 1991 .

[30]  Matthew Goeckner,et al.  Monte Carlo simulation of ions in a magnetron plasma , 1991 .

[31]  W. Steckelmacher,et al.  Handbook of plasma processing technology: Fundamentals, etching, deposition and surface interactions , 1991 .

[32]  Matthew Goeckner,et al.  Model of energetic electron transport in magnetron discharges , 1990 .

[33]  J. Goree,et al.  Analytic expression for the electric potential in the plasma sheath , 1989 .

[34]  J. Goree,et al.  Low‐frequency turbulent transport in magnetron plasmas , 1989 .

[35]  P. Echlin,et al.  Scanning Electron Microscopy , 2014 .