The Effect Magnet Design on Controlling the Target Erosion Profile for DC Magnetron with the Rectangular Target
暂无分享,去创建一个
[1] Jacob C. Stephens,et al. Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial , 2021, Atoms.
[2] Shibo Bi,et al. Prediction of midfrequency sputtering cathode erosion position with vertical magnetic field , 2020 .
[3] K. Kim,et al. Effect of Magnetic Field Arrangement of Facing Targets Sputtering (FTS) System on Controlling Plasma Confinement , 2020 .
[4] C. Mitterer,et al. Linking erosion and sputter performance of a rotatable Mo target to microstructure and properties of the deposited thin films , 2018, Surface and Coatings Technology.
[5] S. Dew,et al. Comprehensive computer model for magnetron sputtering. II. Charged particle transport , 2014 .
[6] D. Holec,et al. Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5 , 2012, 1212.4089.
[7] Z. Ristivojevic,et al. A Monte Carlo simulation of ion transport at finite temperatures , 2008, 0806.0401.
[8] F. Yun. Computer simulation of the target etching characteristics in magnetron sputtering , 2012 .
[9] B. Szyszka,et al. Simulation of plasma potential and ion energies in magnetron sputtering , 2011 .
[10] H. Sawin,et al. Modeling of the angular dependence of plasma etching , 2009 .
[11] A. Solov'ev,et al. Investigation of plasma characteristics in an unbalanced magnetron sputtering system , 2009 .
[12] Kun Liu,et al. The microstructure and wettability of the TiOx films synthesized by reactive DC magnetron sputtering , 2009 .
[13] Yunpeng Yin,et al. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma , 2008 .
[14] V. S. Raghunathan,et al. Influence of nitrogen flow rate on growth of TiAlN films prepared by DC magnetron sputtering , 2007 .
[15] V. Mitin,et al. High deposition rate magnetrons: key elements and advantages , 2006 .
[16] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .
[17] D. Depla,et al. Monte Carlo Simulation of Anomalous Erosion in Large Area Sputter Magnetrons , 2005 .
[18] D. Depla,et al. Calculation of the effective gas interaction probabilities of the secondary electrons in a dc magnetron discharge , 2004 .
[19] M. Yehya,et al. Novel Enhanced Magnetron Sputtering System , 2004 .
[20] W. Lee,et al. Multi-scale simulation of plasma generation and film deposition in a circular type DC magnetron sputtering system , 2005 .
[21] J. Gracio,et al. A cross-corner effect in a rectangular sputtering magnetron , 2003 .
[22] Jae Koo Lee,et al. Modeling of magnetron sputtering plasmas , 2002 .
[23] S. Ejima,et al. Magnetic dome configuration for magnetron sputtering , 2001 .
[24] T. Nomura,et al. An anomalous erosion of a rectangular magnetron system , 2000 .
[25] Mohamed Henini,et al. Handbook of Thin-Film Deposition Processes and Techniques , 2000 .
[26] J. Rabalais. Low energy ion-surface interactions , 1994 .
[27] M. S. J. Hashmi,et al. Magnetic fields in magnetron sputtering systems , 1993 .
[28] D. J. Economou,et al. Fluid simulations of glow discharges: Effect of metastable atoms in argon , 1993 .
[29] R. R. Parsons,et al. Magnetic field and substrate position effects on the ion/deposition flux ratio in magnetron sputtering , 1991 .
[30] Matthew Goeckner,et al. Monte Carlo simulation of ions in a magnetron plasma , 1991 .
[31] W. Steckelmacher,et al. Handbook of plasma processing technology: Fundamentals, etching, deposition and surface interactions , 1991 .
[32] Matthew Goeckner,et al. Model of energetic electron transport in magnetron discharges , 1990 .
[33] J. Goree,et al. Analytic expression for the electric potential in the plasma sheath , 1989 .
[34] J. Goree,et al. Low‐frequency turbulent transport in magnetron plasmas , 1989 .
[35] P. Echlin,et al. Scanning Electron Microscopy , 2014 .