Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity

We provide a sparse version of the bounded degree SOS hierarchy BSOS (Lasserre et al. in EURO J Comp Optim:87–117, 2017) for polynomial optimization problems. It permits to treat large scale problems which satisfy a structured sparsity pattern. When the sparsity pattern satisfies the running intersection property this Sparse-BSOS hierarchy of semidefinite programs (with semidefinite constraints of fixed size) converges to the global optimum of the original problem. Moreover, for the class of SOS-convex problems, finite convergence takes place at the first step of the hierarchy, just as in the dense version.

[1]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[2]  Ian A. Hiskens,et al.  Semidefinite relaxations of equivalent optimal power flow problems: An illustrative example , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[3]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[4]  Masakazu Muramatsu,et al.  A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones , 2009, Comput. Optim. Appl..

[5]  Jean B. Lasserre,et al.  A bounded degree SOS hierarchy for polynomial optimization , 2015, EURO J. Comput. Optim..

[6]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[7]  Diethard Klatte,et al.  A Frank–Wolfe Type Theorem for Convex Polynomial Programs , 2002, Comput. Optim. Appl..

[8]  Daniel K. Molzahn,et al.  Moment/Sum-of-Squares Hierarchy for Complex Polynomial Optimization , 2015, 1508.02068.

[9]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[10]  Etienne de Klerk,et al.  On the Lasserre Hierarchy of Semidefinite Programming Relaxations of Convex Polynomial Optimization Problems , 2011, SIAM J. Optim..

[11]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[12]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[13]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[14]  J. Lasserre An Introduction to Polynomial and Semi-Algebraic Optimization , 2015 .

[15]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[16]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[17]  M. Marshall,et al.  Representations of Non-Negative Polynomials, Degree Bounds and Applications to Optimization , 2009, Canadian Journal of Mathematics.

[18]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[19]  D. Handelman Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .

[20]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations for Polynomial Optimization with Sparsity , 2006, ICMS.

[21]  Jean B. Lasserre,et al.  A Lagrangian relaxation view of linear and semidefinite hierarchies , 2012, 52nd IEEE Conference on Decision and Control.

[22]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[23]  Etienne de Klerk,et al.  A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem , 2018, Ann. Oper. Res..

[24]  Ian A. Hiskens,et al.  Sparsity-Exploiting Moment-Based Relaxations of the Optimal Power Flow Problem , 2014, IEEE Transactions on Power Systems.

[25]  Jean B. Lasserre,et al.  Polynomial Programming: LP-Relaxations Also Converge , 2005, SIAM J. Optim..

[26]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[27]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[28]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[29]  James Demmel,et al.  Sparse SOS Relaxations for Minimizing Functions that are Summations of Small Polynomials , 2008, SIAM J. Optim..

[30]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[31]  Avner Magen,et al.  Extending SDP Integrality Gaps to Sherali-Adams with Applications to Quadratic Programming and MaxCutGain , 2010, IPCO.

[32]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[33]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[34]  Madhur Tulsiani,et al.  SDP Gaps from Pairwise Independence , 2012, Theory Comput..

[35]  Duan Li,et al.  On zero duality gap in nonconvex quadratic programming problems , 2012, J. Glob. Optim..

[36]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .