Rayleigh wave propagation in semi-infinite flexoelectric dielectrics

With consideration of the static bulk flexoelectric effect, dynamic bulk flexoelectric effect, strain gradient elastic effect and micro-inertia effect, Rayleigh wave propagation in semi-infinite centrosymmetric flexoelectric dielectrics is investigated and the dispersion relation is derived. Numerical results of the Rayleigh wave propagation in single crystal SrTiO3 indicate that, the strain gradient elastic effect and the micro-inertia effect have competing influences on the wave velocity, and the ratio of the corresponding two internal length scales is essential to the dispersion curve. However, these effects are remarkable only when the wave number is relatively large. In addition, the static bulk flexoelectric effect is found to reduce the Rayleigh wave velocity especially when the static bulk flexocoupling coefficient is large. Furthermore, influences of the dynamic bulk flexoelectric effect and the polarization gradient effect on the Rayleigh wave propagation are also examined that they both hinge on the flexocoupling coefficient other than the related material constants.

[1]  F. Jiao,et al.  Wave Propagation in Piezoelectric Medium with the Flexoelectric Effect Considered , 2019 .

[2]  Junxi Wang,et al.  Method of the out‐of‐band rejection improvement of the AlN based surface acoustic wave filters , 2019, Ultrasonics.

[3]  B. H. Nguyen,et al.  Dynamic flexoelectric effect on piezoelectric nanostructures , 2018, European Journal of Mechanics - A/Solids.

[4]  S. Shen,et al.  Lamb wave propagation with flexoelectricity and strain gradient elasticity considered , 2018, Smart Materials and Structures.

[5]  S. Shen,et al.  Wave Propagation in Flexoelectric Microstructured Solids , 2018 .

[6]  F. Jiao,et al.  Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half‐spaces , 2018, Ultrasonics.

[7]  S. Shen,et al.  Love waves in layered flexoelectric structures , 2017 .

[8]  A. Singhal,et al.  Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum , 2017 .

[9]  Sergei V. Kalinin,et al.  Lost surface waves in nonpiezoelectric solids , 2017 .

[10]  Sergei V. Kalinin,et al.  Missed surface waves in non-piezoelectric solids , 2016, 1612.08906.

[11]  Rachel S. Edwards,et al.  Focused Rayleigh wave EMAT for characterisation of surface-breaking defects , 2016 .

[12]  M. Stengel Unified ab initio formulation of flexoelectricity and strain-gradient elasticity , 2016, 1604.08126.

[13]  Umesh Kumar Bhaskar,et al.  A flexoelectric microelectromechanical system on silicon. , 2016, Nature nanotechnology.

[14]  P. Sharma,et al.  Flexoelectricity in two-dimensional crystalline and biological membranes. , 2015, Nanoscale.

[15]  A. Tagantsev,et al.  Dynamic flexoelectric effect in perovskites from first-principles calculations , 2015, 1503.05355.

[16]  Xiaoning Jiang,et al.  Flexoelectric nano-generator: Materials, structures and devices , 2013 .

[17]  A. Tagantsev,et al.  Fundamentals of flexoelectricity in solids , 2013, Nanotechnology.

[18]  Pavlo Zubko,et al.  Flexoelectric Effect in Solids , 2013 .

[19]  D. Vanderbilt,et al.  First-principles theory and calculation of flexoelectricity , 2013, 1307.0132.

[20]  M. Stengel Flexoelectricity from density-functional perturbation theory , 2013, 1306.4240.

[21]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[22]  D. Vanderbilt,et al.  First-principles theory of frozen-ion flexoelectricity , 2011, 1108.4997.

[23]  Shuling Hu,et al.  A theory of flexoelectricity with surface effect for elastic dielectrics , 2010 .

[24]  E. Artacho,et al.  The flexoelectricity of barium and strontium titanates from first principles , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  C. Landis,et al.  Piezoelectric thin-film superlattices without using piezoelectric materials , 2010, 1003.2745.

[26]  R. Maranganti,et al.  Atomistic determination of flexoelectric properties of crystalline dielectrics , 2009, 0903.0684.

[27]  Jin-Xi Liu,et al.  Wave propagation in piezoelectric/piezomagnetic layered periodic composites , 2008 .

[28]  F. Mirzade Influence of flexoelectricity on the propagation of nonlinear strain waves in solids , 2007 .

[29]  Neha Sharma,et al.  Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions , 2006 .

[30]  Ioannis Vardoulakis,et al.  Dispersive Rayleigh-Wave Propagation in Microstructured Solids Characterized by Dipolar Gradient Elasticity , 2004 .

[31]  L. Eric Cross,et al.  Flexoelectric polarization of barium strontium titanate in the paraelectric state , 2002 .

[32]  L. Eric Cross,et al.  Large flexoelectric polarization in ceramic lead magnesium niobate , 2001 .

[33]  A. Tagantsev,et al.  Piezoelectricity and flexoelectricity in crystalline dielectrics. , 1986, Physical review. B, Condensed matter.

[34]  R. Birss,et al.  The elastic dielectric. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Toupin The Elastic Dielectric , 1956 .