Single-shooting homotopy method for parameter identification in dynamical systems.
暂无分享,去创建一个
[1] Mordecai Avriel,et al. Nonlinear programming , 1976 .
[2] Chang Y. Wang,et al. A homotopy method applied to elastica problems , 1981 .
[3] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[4] L. Watson,et al. Modern homotopy methods in optimization , 1989 .
[5] Gregory L. Baker,et al. Chaotic Dynamics: An Introduction , 1990 .
[6] Baake,et al. Fitting ordinary differential equations to chaotic data. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[7] L. Tsimring,et al. The analysis of observed chaotic data in physical systems , 1993 .
[8] Parlitz,et al. Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[9] Parlitz,et al. Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.
[10] Gregory L. Baker,et al. Chaotic dynamics: Contents , 1996 .
[11] Henk Nijmeijer,et al. An observer looks at synchronization , 1997 .
[12] India,et al. Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.
[13] Jinhu Lu,et al. Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .
[14] Dianne P. O'Leary,et al. HOPE: A Homotopy Optimization Method for Protein Structure Prediction , 2005, J. Comput. Biol..
[15] Jack J Jiang,et al. Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] M. Barenco,et al. Fitting ordinary differential equations to short time course data , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[17] Jun-Juh Yan,et al. Parameter identification of chaotic systems using evolutionary programming approach , 2008, Expert Syst. Appl..
[18] James M. Jeanne,et al. Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] P. Gill,et al. State and parameter estimation in nonlinear systems as an optimal tracking problem , 2008 .
[20] Mark Kostuk,et al. Dynamical State and Parameter Estimation , 2009, SIAM J. Appl. Dyn. Syst..
[21] Christophe Letellier,et al. Interplay between synchronization, observability, and dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] Zhang Jiafan,et al. Numerical Approach to Identifiability Test of Parametric Models in Nonlinear Mechanical Systems , 2011 .
[23] John McPhee,et al. Parameter identification in dynamic systems using the homotopy optimization approach , 2011 .
[24] John McPhee,et al. Nonlinear Parameter Identification in Multibody Systems Using Homotopy Continuation , 2012 .