Single-shooting homotopy method for parameter identification in dynamical systems.

An algorithm for identifying parameters in dynamical systems is developed in this work using homotopy transformations and the single-shooting method. The equations governing the dynamics of the mathematical model are augmented with observer-like homotopy terms that smooth the objective function. As a result, premature convergence to a local minimum is avoided and the obtained parameter estimates are globally optimal. Numerical examples are presented to demonstrate the application of the proposed approach to chaotic systems.

[1]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[2]  Chang Y. Wang,et al.  A homotopy method applied to elastica problems , 1981 .

[3]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[4]  L. Watson,et al.  Modern homotopy methods in optimization , 1989 .

[5]  Gregory L. Baker,et al.  Chaotic Dynamics: An Introduction , 1990 .

[6]  Baake,et al.  Fitting ordinary differential equations to chaotic data. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[7]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[8]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[10]  Gregory L. Baker,et al.  Chaotic dynamics: Contents , 1996 .

[11]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[12]  India,et al.  Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.

[13]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .

[14]  Dianne P. O'Leary,et al.  HOPE: A Homotopy Optimization Method for Protein Structure Prediction , 2005, J. Comput. Biol..

[15]  Jack J Jiang,et al.  Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  M. Barenco,et al.  Fitting ordinary differential equations to short time course data , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Jun-Juh Yan,et al.  Parameter identification of chaotic systems using evolutionary programming approach , 2008, Expert Syst. Appl..

[18]  James M. Jeanne,et al.  Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  P. Gill,et al.  State and parameter estimation in nonlinear systems as an optimal tracking problem , 2008 .

[20]  Mark Kostuk,et al.  Dynamical State and Parameter Estimation , 2009, SIAM J. Appl. Dyn. Syst..

[21]  Christophe Letellier,et al.  Interplay between synchronization, observability, and dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Zhang Jiafan,et al.  Numerical Approach to Identifiability Test of Parametric Models in Nonlinear Mechanical Systems , 2011 .

[23]  John McPhee,et al.  Parameter identification in dynamic systems using the homotopy optimization approach , 2011 .

[24]  John McPhee,et al.  Nonlinear Parameter Identification in Multibody Systems Using Homotopy Continuation , 2012 .