AN A POSTERIORI ERROR ESTIMATOR FOR THE LAMÉ EQUATION BASED ON H ( DIV )-CONFORMING STRESS APPROXIMATIONS
暂无分享,去创建一个
[1] Douglas N. Arnold,et al. Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..
[2] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[3] Ivo Babuška,et al. Reliable and Robust A Posteriori Error Estimation for Singularly Perturbed Reaction-Diffusion Problems , 1999 .
[4] D. W. Kelly,et al. Procedures for residual equilibration and local error estimation in the finite element method , 1989 .
[5] Pierre Ladevèze,et al. New advances on a posteriori error on constitutive relation in f.e. analysis , 1997 .
[6] Sheng-hong Chen,et al. Adaptive Techniques in the Finite Element Method , 2018, Springer Tracts in Civil Engineering.
[7] Erwin Stein,et al. Equilibrium method for postprocessing and error estimation in the finite element method , 2006 .
[9] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[10] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[11] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[12] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[13] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[14] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[15] S. Ohnimus,et al. Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .
[16] Carsten Carstensen,et al. A posteriori dual-mixed adaptive finite element error control for Lamé and Stokes equations , 2005, Numerische Mathematik.
[17] Yanqiu Wang,et al. Preconditioning for the mixed formulation of linear plane elasticity , 2005 .
[18] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[19] D. Arnold,et al. RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .
[20] Erwin Stein,et al. A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems , 1998 .
[21] Mark Ainsworth,et al. A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .
[22] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[23] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[24] I. Babuska,et al. The finite element method and its reliability , 2001 .
[25] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .