The Benefits of Bagging for Forecast Models of Realized Volatility

This article shows that bagging can improve the forecast accuracy of time series models for realized volatility. We consider 23 stocks from the Dow Jones Industrial Average over the sample period 1995 to 2005 and employ two different forecast models, a log-linear specification in the spirit of the heterogeneous autoregressive model and a nonlinear specification with logistic transitions. Both forecast model types benefit from bagging, in particular in the 1990s part of our sample. The log-linear specification shows larger improvements than the nonlinear model. Bagging the log-linear model yields the highest forecast accuracy on our sample.

[1]  Eric Hillebrand,et al.  Why It Is OK to Use the HAR-RV(1,5,21) Model , 2012 .

[2]  Siem Jan Koopman,et al.  The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures , 2011 .

[3]  David E. Rapach,et al.  Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth , 2010 .

[4]  Tae-Hwy Lee,et al.  To Combine Forecasts or to Combine Information? , 2010 .

[5]  Francesco Audrino,et al.  Modeling Tick-by-Tick Realized Correlations , 2008, Comput. Stat. Data Anal..

[6]  Roel C. A. Oomen,et al.  Realised quantile-based estimation of the integrated variance , 2010 .

[7]  M. Medeiros,et al.  Forecasting Realized Volatility with Linear and Nonlinear Models , 2009 .

[8]  Kim Christensen,et al.  Appendix to Realised Quantile-Based Estimation of the Integrated Variance , 2009 .

[9]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[10]  M. Medeiros,et al.  Chapter 8 Estimating and Forecasting GARCH Models in the Presence of Structural Breaks and Regime Switches , 2008 .

[11]  Eric Hillebrand,et al.  ASYMMETRIES , BREAKS , AND LONG-RANGE DEPENDENCE : AN ESTIMATION FRAMEWORK FOR TIME SERIES OF DAILY REALIZED VOLATILITY , 2008 .

[12]  M. Medeiros,et al.  A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries , 2008 .

[13]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[14]  Michael A. Salsburg,et al.  Modeling and Forecasting , 2007, Int. CMG Conference.

[15]  M. Medeiros,et al.  Asymmetric effects and long memory in the volatility of Dow Jones stocks , 2009 .

[16]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[17]  Yang Yang,et al.  Bagging binary and quantile predictors for time series , 2006 .

[18]  Jeremy H. Large,et al.  Moving Average-Based Estimators of Integrated Variance , 2006 .

[19]  Marcel Scharthy,et al.  Asymmetric E¤ects and Long Memory in the Volatility of DJIA stocks , 2006 .

[20]  L. Kilian,et al.  How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation , 2008 .

[21]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[22]  Lutz Kilian,et al.  How Useful is Bagging in Forecasting Economic Time Series? A Case Study of Us CPI Inflation , 2005 .

[23]  L. Glosten,et al.  Market Microstructure: A Survey of Microfoundations, Empirical Results, and Policy Implications , 2005 .

[24]  Zhou Zhou,et al.  “A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data” , 2005 .

[25]  Mark W. Watson,et al.  AN EMPIRICAL COMPARISON OF METHODS FOR FORECASTING USING MANY PREDICTORS , 2005 .

[26]  M. Medeiros,et al.  Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination , 2005 .

[27]  S. Hamid,et al.  Using neural networks for forecasting volatility of S&P 500 Index futures prices , 2004 .

[28]  Fulvio Corsi,et al.  A Simple Long Memory Model of Realized Volatility , 2004 .

[29]  Dick J. C. van Dijk,et al.  Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity , 2004 .

[30]  Lutz Kilian,et al.  Bagging Time Series Models ∗ , 2004 .

[31]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[32]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[33]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[34]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[35]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[36]  M. Medeiros,et al.  Building Neural Network Models for Time Series: A Statistical Approach , 2002 .

[37]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[38]  Jeffrey S. Racine,et al.  Semiparametric ARX neural-network models with an application to forecasting inflation , 2001, IEEE Trans. Neural Networks.

[39]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[40]  Marcelo C. Medeiros,et al.  Modeling exchange rates: smooth transitions, neural networks, and linear models , 2001, IEEE Trans. Neural Networks.

[41]  P. Bühlmann,et al.  Analyzing Bagging , 2001 .

[42]  Marcelo C. Medeiros,et al.  A hybrid linear-neural model for time series forecasting , 2000, IEEE Trans. Neural Networks Learn. Syst..

[43]  Kurt Hornik,et al.  Stationary and Integrated Autoregressive Neural Network Processes , 2000, Neural Computation.

[44]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[45]  Timo Teräsvirta,et al.  Smooth transition autoregressive models - A survey of recent developments , 2000 .

[46]  Ananth N. Madhavan,et al.  Market Microstructure: A Survey , 2000 .

[47]  N. Shephard,et al.  Econometric analysis of realised volatility and its use in estimating stochastic volatility models , 2000 .

[48]  Michael Y. Hu,et al.  Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates , 1999 .

[49]  Ulrich Anders,et al.  Model selection in neural networks , 1999, Neural Networks.

[50]  Halbert White,et al.  Improved Rates and Asymptotic Normality for Nonparametric Neural Network Estimators , 1999, IEEE Trans. Inf. Theory.

[51]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[52]  Xiaotong Shen,et al.  Sieve extremum estimates for weakly dependent data , 1998 .

[53]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[54]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[55]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[56]  R. Donaldson,et al.  An artificial neural network-GARCH model for international stock return volatility , 1997 .

[57]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[58]  P. Hall,et al.  On blocking rules for the bootstrap with dependent data , 1995 .

[59]  Kurt Hornik,et al.  Degree of Approximation Results for Feedforward Networks Approximating Unknown Mappings and Their Derivatives , 1994, Neural Computation.

[60]  Halbert White,et al.  Artificial neural networks: an econometric perspective ∗ , 1994 .

[61]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[62]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[63]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[64]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[65]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[66]  Bernard Widrow,et al.  Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[67]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[68]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[69]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[70]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[71]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .