New constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes

Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. In this paper, we give two new constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes and obtain eighteen new classes of quantum MDS convolutional codes. Most of them are new in the sense that the parameters of the codes are different from all the previously known ones.

[1]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[2]  Jianfa Qian,et al.  Constructions of new Quantum Burst-correcting Codes , 2015 .

[3]  Martin Rötteler,et al.  Constructions of Quantum Convolutional Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[4]  Reginaldo Palazzo Júnior,et al.  A concatenated [(4, 1, 3)] quantum convolutional code , 2004, Information Theory Workshop.

[5]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional Codes Derived from Generalized Reed-Solomon Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[6]  Giuliano G. La Guardia,et al.  On Negacyclic MDS-Convolutional Codes , 2013, ArXiv.

[7]  Mark M. Wilde,et al.  Convolutional entanglement distillation , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[9]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional BCH Codes , 2007, 2007 10th Canadian Workshop on Information Theory (CWIT).

[10]  Tao Zhang,et al.  Quantum MDS codes with large minimum distance , 2017, Des. Codes Cryptogr..

[11]  H. F. Chau Quantum Convolutional Error Correction Codes , 1998, QCQC.

[12]  Giuliano G. La Guardia,et al.  On Classical and Quantum MDS-Convolutional BCH Codes , 2012, IEEE Transactions on Information Theory.

[13]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[14]  Mark M. Wilde,et al.  Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.

[15]  H. Ollivier,et al.  Quantum convolutional codes: fundamentals , 2004 .

[16]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[17]  Han Mao Kiah,et al.  Pure Asymmetric Quantum MDS Codes from CSS Construction: A Complete Characterization , 2010, 1006.1694.

[18]  Martin Rötteler,et al.  Quantum block and convolutional codes from self-orthogonal product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[19]  Jing Li,et al.  Efficient Quantum Stabilizer Codes: LDPC and LDPC-Convolutional Constructions , 2010, IEEE Transactions on Information Theory.

[20]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[21]  Guanghui Zhang,et al.  A Construction of MDS Quantum Convolutional Codes , 2014, ArXiv.

[22]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[23]  H. F. Chau Quantum Convolutional Error Correcting Codes , 1997 .

[24]  Jianzhang Chen,et al.  Some families of asymmetric quantum codes and quantum convolutional codes from constacyclic codes , 2015 .