Numerical Simulations in Biological Solid-State NMR Spectroscopy

Abstract Numerical simulations play an increasingly important role in biological solid-state NMR spectroscopy. In this chapter, we describe some of the most important tools currently used for numerical simulations in solid-state NMR, including a brief theoretical section to provide the basic definitions. The most powerful tools involve general computer software packages, enabling simulations of essentially all types of experiments with flexibility similar to that of a modern NMR spectrometer. Supplementary software includes programs that allow easy establishment of typical anisotropic tensor information for the numerical simulations as well as visualization of molecular structures with attached graphics of NMR-relevant information such as peptide planes, chemical shielding tensors, etc. Based on these tools, we describe the use of numerical simulations for experiment evaluation, with examples from rotating as well as uniaxially oriented samples. The subsequent part describes the use of computer software for design of solid-state NMR experiments, based on standard non-linear optimization methods as well as optimal control theory. The final section demonstrates the use of numerical simulations for extraction of information about structure and dynamics from experimental spectra based on various widely different applications.

[1]  Walter I. Goldburg,et al.  Nuclear-Magnetic-Resonance Line Narrowing by a Rotating rf Field , 1965 .

[2]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[3]  N. Nielsen,et al.  Solid-State QCPMG NMR of Low-γ Quadrupolar Metal Nuclei in Natural Abundance , 2000 .

[4]  R. Griffin Solid state nuclear magnetic resonance of lipid bilayers. , 1981, Methods in enzymology.

[5]  Andreas Brinkmann,et al.  Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids , 2000 .

[6]  Timo O. Reiss,et al.  Optimal control of spin dynamics in the presence of relaxation. , 2002, Journal of magnetic resonance.

[7]  A. Watts,et al.  Macroscopic orientation of natural and model membranes for structural studies. , 1997, Analytical biochemistry.

[8]  K. Schmidt-Rohr,et al.  Dynamics of polymers from one- and two-dimensional solid-state NMR spectroscopy , 2002 .

[9]  Bak,et al.  REPULSION, A Novel Approach to Efficient Powder Averaging in Solid-State NMR , 1997, Journal of magnetic resonance.

[10]  M. Baldus Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning , 2002 .

[11]  M. Hohwy,et al.  A HIGH-ORDER AND BROADBAND CRAMPS EXPERIMENT USING Z-ROTATIONAL DECOUPLING , 1997 .

[12]  Tomas Lozano-Perez,et al.  De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Richard Henderson,et al.  Molecular mechanism of vectorial proton translocation by bacteriorhodopsin , 2000, Nature.

[14]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[15]  B. Meier,et al.  A combination of slow and fast RF field modulation for improved cross polarization in solid-state MAS NMR , 1997 .

[16]  W. Rhim,et al.  Analysis of multiple pulse NMR in solids. II , 1973 .

[17]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[18]  M. Edén Computer simulations in solid-state NMR. I. Spin dynamics theory , 2003 .

[19]  M. Duer Solid-State NMR Studies of Molecular Motion , 2001 .

[20]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[21]  John K. Ousterhout,et al.  Tcl and the Tk Toolkit , 1994 .

[22]  Richard R. Ernst,et al.  Product operator formalism for the description of NMR pulse experiments , 1984 .

[23]  Peter Mansfield,et al.  Symmetrized Multipulse Nuclear-Magnetic-Resonance Experiments in Solids: Measurement of the Chemical-Shift Shielding Tensor in Some Compounds , 1973 .

[24]  David M. Grant,et al.  Methods for analyzing spectroscopic line shapes. NMR solid powder patterns , 1986 .

[25]  B. Meier,et al.  Adiabatic passage Hartmann-Hahn cross polarization in NMR under magic angle sample spinning , 1995 .

[26]  K. Zilm,et al.  Cross polarization with high-speed magic-angle spinning , 1993 .

[27]  W. Mai,et al.  Orientational constraints as three‐dimensional structural constraints from chemical shift anisotropy: The polypeptide backbone of gramicidin A in a lipid bilayer , 1993, Protein science : a publication of the Protein Society.

[28]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[29]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[30]  D. Sakellariou,et al.  Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. , 2003, Journal of magnetic resonance.

[31]  D. Filippov,et al.  The conformation of neurotensin bound to its G protein-coupled receptor , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Opella,et al.  Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints , 2003, Protein science : a publication of the Protein Society.

[33]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[34]  G. Veglia,et al.  Dipolar waves map the structure and topology of helices in membrane proteins. , 2003, Journal of the American Chemical Society.

[35]  Y. Zur,et al.  Design of adiabatic selective pulses using optimal control theory , 1996, Magnetic resonance in medicine.

[36]  M. Hohwy,et al.  Elimination of high order terms in multiple pulse nuclear magnetic resonance spectroscopy: Application to homonuclear decoupling in solids , 1997 .

[37]  M. Edén Computer simulations in solid-state NMR. II. implementations for static and rotating samples , 2003 .

[38]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[39]  C. Dobson,et al.  High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Schmidt-Rohr,et al.  Multidimensional Solid-State Nmr and Polymers , 1994 .

[41]  A. Pines,et al.  Proton‐Enhanced Nuclear Induction Spectroscopy. A Method for High Resolution NMR of Dilute Spins in Solids , 1972 .

[42]  Brent B Welch,et al.  Practical Programming in Tcl and Tk , 1999 .

[43]  S. Opella NMR and membrane proteins. , 1997, Nature structural biology.

[44]  M. Levitt,et al.  Frequency-switched pulse sequences: Homonuclear decoupling and dilute spin NMR in solids , 1989 .

[45]  B. Meier,et al.  Adiabatic homonuclear polarization transfer in magic-angle-spinning solid-state NMR 1 Presented in p , 1997 .

[46]  N. Nielsen,et al.  Sensitivity-enhanced multiple-quantum MAS NMR of half-integer quadrupolar nuclei , 1997 .

[47]  Wyndham B Blanton,et al.  BlochLib: a fast NMR C++ tool kit. , 2003, Journal of magnetic resonance.

[48]  M. Levitt,et al.  NUMERICAL SIMULATION OF PERIODIC NUCLEAR MAGNETIC RESONANCE PROBLEMS : FAST CALCULATION OF CAROUSEL AVERAGES , 1998 .

[49]  Nicolas Giraud,et al.  Solid state NMR sequential resonance assignments and conformational analysis of the 2×10.4 kDa dimeric form of the Bacillus subtilis protein Crh , 2003, Journal of biomolecular NMR.

[50]  Mauricio Montal,et al.  Three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) from HIV-1. , 2003, Journal of molecular biology.

[51]  N. Nielsen,et al.  Methodological development of solid-state NMR for characterization of membrane proteins , 2003 .

[52]  G. Drobny,et al.  A study of homonuclear dipolar recoupling pulse sequences in solid-state nuclear magnetic resonance. , 2003, Journal of the American Chemical Society.

[53]  N. Nielsen,et al.  Magic-angle spinning NMR spectra of satellite transitions for quadrupolar nuclei in solids , 1989 .

[54]  S. Vega,et al.  Proton spectroscopy in solid state nuclear magnetic resonance with windowed phase modulated Lee–Goldburg decoupling sequences , 2002 .

[55]  Angelika Sebald,et al.  Dipolar recoupling under magic-angle spinning conditions , 2000 .

[56]  M. Hohwy,et al.  Efficient Spectral Simulations in NMR of Rotating Solids. The γ-COMPUTE Algorithm , 1999 .

[57]  C. Fermon,et al.  Efficient Time Propagation Technique for MAS NMR Simulation: Application to Quadrupolar Nuclei. , 1998, Journal of magnetic resonance.

[58]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[59]  M. Hohwy,et al.  Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence , 1998 .

[60]  O. Antzutkin,et al.  Sideband suppression in magic-angle-spinning NMR by a sequence of 5 pi pulses. , 1993, Solid state nuclear magnetic resonance.

[61]  Steven O. Smith,et al.  Variable-Amplitude Cross-Polarization MAS NMR , 1993 .

[62]  N. Nielsen,et al.  Techniques and applications of NMR to membrane proteins (Review) , 2004 .

[63]  N. Nielsen,et al.  Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence , 1995 .

[64]  N. Nielsen,et al.  Double‐quantum homonuclear rotary resonance: Efficient dipolar recovery in magic‐angle spinning nuclear magnetic resonance , 1994 .

[65]  Michael Mehring,et al.  Principles of high-resolution NMR in solids , 1982 .

[66]  N. Nielsen,et al.  Satellite transitions in MAS NMR spectra of quadrupolar nuclei , 1991 .

[67]  B. Meier,et al.  Rotor‐synchronized amplitude‐modulated nuclear magnetic resonance spin‐lock sequences for improved cross polarization under fast magic angle sample spinning , 1995 .

[68]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[69]  Navin Khaneja,et al.  Improving solid-state NMR dipolar recoupling by optimal control. , 2004, Journal of the American Chemical Society.

[70]  Dimitris Sakellariou,et al.  Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation , 2000 .

[71]  S. K. Zaremba,et al.  Good lattice points, discrepancy, and numerical integration , 1966 .

[72]  N. Nielsen,et al.  Towards high-resolution solid-state NMR on large uniformly 15N- and [13C,15N]-labeled membrane proteins in oriented lipid bilayers , 2002, Journal of biomolecular NMR.

[73]  D. Raleigh,et al.  Theory and simulations of homonuclear spin pair systems in rotating solids , 1990 .

[74]  S. Opella,et al.  Solid-state NMR triple-resonance backbone assignments in a protein , 1999, Journal of biomolecular NMR.

[75]  J. Herzfeld,et al.  Sideband intensities in NMR spectra of samples spinning at the magic angle , 1980 .

[76]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[77]  L. Emsley,et al.  Numerical simulation of solid-state NMR experiments , 2000 .

[78]  Wyndham B Blanton,et al.  Rational reduction of periodic propagators for off-period observations. , 2004, Journal of magnetic resonance.

[79]  Rachel W. Martin,et al.  Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state , 2000, Journal of biomolecular NMR.

[80]  B. C. Gerstein,et al.  Transient Techniques in NMR of Solids: An Introduction to Theory and Practice , 1985 .

[81]  Harold Conroy,et al.  Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional Integrals , 1967 .

[82]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .

[83]  S. Opella,et al.  Dipolar Waves as NMR maps of helices in proteins. , 2003, Journal of magnetic resonance.

[84]  N. Nielsen,et al.  Molecular dynamics from 2H Quadrupolar Carr–Purcell–Meiboom–Gill solid-state NMR spectroscopy , 1998 .

[85]  N. Nielsen,et al.  Sensitivity-Enhanced Quadrupolar-Echo NMR of Half-Integer Quadrupolar Nuclei. Magnitudes and Relative Orientation of Chemical Shielding and Quadrupolar Coupling Tensors , 1997 .

[86]  Levitt,et al.  Computation of Orientational Averages in Solid-State NMR by Gaussian Spherical Quadrature. , 1998, Journal of magnetic resonance.

[87]  R. Griffin,et al.  Deuterium solid-state nuclear magnetic resonance studies of methyl group dynamics in bacteriorhodopsin and retinal model compounds: evidence for a 6-s-trans chromophore in the protein. , 1994, Biochemistry.

[88]  Mattias Edén,et al.  Computer simulations in solid-state NMR. III. powder averaging , 2003 .

[89]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[90]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[91]  S. Opella,et al.  Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Morten Bjerring,et al.  Solid-state NMR heteronuclear dipolar recoupling using off-resonance symmetry-based pulse sequences , 2003 .

[93]  F. Marassi A simple approach to membrane protein secondary structure and topology based on NMR spectroscopy. , 2001, Biophysical journal.

[94]  G. Veglia,et al.  Dipolar waves as NMR maps of protein structure. , 2002, Journal of the American Chemical Society.

[95]  G. Drobny,et al.  Development and optimization of multipulse propagators: Applications to homonuclear spin decoupling in solids , 1990 .

[96]  R. Leapman,et al.  A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  R. Tycko Solid-state NMR as a probe of amyloid fibril structure. , 2000, Current opinion in chemical biology.

[98]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[99]  L. Frydman,et al.  Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR , 1995 .

[100]  M Bak,et al.  SIMPSON: a general simulation program for solid-state NMR spectroscopy. , 2000, Journal of magnetic resonance.

[101]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[102]  Closed solution to the Baker-Campbell-Hausdorff problem: exact effective Hamiltonian theory for analysis of nuclear-magnetic-resonance experiments. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  N. Nielsen,et al.  TOSS in high-speed MAS NMR , 1988 .

[104]  N. Nielsen,et al.  Improved pulse sequences for pure exchange solid‐state NMR spectroscopy , 2004, Magnetic resonance in chemistry : MRC.

[105]  B. Meier,et al.  Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk , 2000, Nature.

[106]  R. Griffin Dipolar recoupling in MAS spectra of biological solids , 1998, Nature Structural Biology.

[107]  K. Schmidt-Rohr A double-quantum solid-state NMR technique for determining torsion angles in polymers , 1996 .

[108]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[109]  D. Raleigh,et al.  An analysis of sideband suppression techniques in magic-angle sample spinning NMR , 1987 .

[110]  M. Baldus,et al.  High-resolution solid-state NMR applied to polypeptides and membrane proteins. , 2003, Accounts of chemical research.

[111]  N. Nielsen,et al.  Effects of finite Rf pulses and sample spinning speed in multiple-quantum magic-angle spinning (MQ-MAS) and multiple-quantum quadrupolar carr-purcell-meiboom-gill magic-angle spinning (MQ-QCPMG-MAS) nuclear magnetic resonance of half-integer quadrupolar nuclei , 1999 .

[112]  M. Schubert,et al.  Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy , 2002, Nature.

[113]  J. Gesell,et al.  Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy , 1999, Nature Structural Biology.

[114]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[115]  Jørgen Holm Kristensen,et al.  Efficient solid state NMR powder simulations using SMP and MPP parallel computation. , 2003, Journal of magnetic resonance.

[116]  B. Meier,et al.  Fast-MAS total through-bond correlation spectroscopy using adiabatic pulses. , 2003, Journal of magnetic resonance.

[117]  D. Massiot,et al.  Sensitivity enhancements in MQ-MAS NMR of spin-5/2 nuclei using modulated rf mixing pulses , 2000 .

[118]  R. R. Ernst,et al.  Low-power multipulse line narrowing in solid-state NMR , 1981 .

[119]  J Wang,et al.  Structure of the transmembrane region of the M2 protein H+ channel , 2001, Protein science : a publication of the Protein Society.

[120]  R. A. Mckay,et al.  Quantitative determination of the concentrations of 13C15N chemical bonds by double cross-polarization NMR , 1984 .

[121]  A. Lipton,et al.  67ZN QCPMG SOLID-STATE NMR STUDIES OF ZINC COMPLEXES AS MODELS FOR METALLOPROTEINS , 1999 .

[122]  Max Wolfsberg,et al.  Investigations of a nonrandom numerical method for multidimensional integration , 1973 .

[123]  S. Opella,et al.  A solid-state NMR index of helical membrane protein structure and topology. , 2000, Journal of magnetic resonance.

[124]  B. Meier,et al.  Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. , 2001, Journal of magnetic resonance.

[125]  Heteronuclear coherence transfer in solid-state nuclear magnetic resonance using a γ-encoded transferred echo experiment , 2003 .

[126]  B. Meier,et al.  Computer Simulations in Magnetic Resonance. An Object-Oriented Programming Approach , 1994 .

[127]  W. Dixon Spinning-sideband-free NMR spectra , 1981 .

[128]  D. Massiot,et al.  Multiple quantum magic-angle spinning using rotary resonance excitation , 2001 .

[129]  A. Goldbourt,et al.  Enhanced conversion of triple to single-quantum coherence in the triple-quantum MAS NMR spectrosocopy of spin-5/2 nuclei , 2000 .

[130]  Navin Khaneja,et al.  Time-optimal coherence-order-selective transfer of in-phase coherence in heteronuclear IS spin systems. , 2002, Journal of magnetic resonance.

[131]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[132]  B. Meier,et al.  Efficient N-15-C-13 polarization transfer by adiabatic-passage Hartmann-Hahn cross polarization , 1996 .

[133]  J. Becker,et al.  Structure and topology of a peptide segment of the 6th transmembrane domain of the Saccharomyces cerevisae alpha-factor receptor in phospholipid bilayers. , 2001, Biopolymers.

[134]  Solid-state NMR heteronuclear coherence transfer using phase and amplitude modulated rf irradiation at the Hartmann–Hahn sideband conditions , 2003 .

[135]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[136]  A. Malmendal,et al.  The Flexibility of SIMPSON and SIMMOL for Numerical Simulations in Solid-and Liquid-State NMR Spectroscopy , 2002 .

[137]  M. Hohwy,et al.  Systematic design and evaluation of multiple-pulse experiments in nuclear magnetic resonance spectroscopy using a semi-continuous Baker–Campbell–Hausdorff expansion , 1998 .

[138]  B. Meier,et al.  The molecular structure of spider dragline silk: Folding and orientation of the protein backbone , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[139]  M. Levitt,et al.  Efficient Simulation of Periodic Problems in NMR. Application to Decoupling and Rotational Resonance , 1996 .

[140]  Steven O. Smith,et al.  Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR , 1994 .

[141]  N. Nielsen,et al.  Theory and simulations of molecular dynamics in 2H MAS NMR , 1992 .

[142]  G. Hoatson,et al.  Effects of restricted rotational diffusion on 2H magic angle spinning nuclear magnetic resonance spectra , 1999 .

[143]  A. Watts,et al.  Magic angle-oriented sample spinning (MAOSS): A new approach toward biomembrane studies. , 1998, Journal of magnetic resonance.

[144]  N. Nielsen,et al.  Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR. , 2002, Journal of magnetic resonance.

[145]  T. Cross,et al.  Seeking higher resolution and sensitivity for NMR of quadrupolar nuclei at ultrahigh magnetic fields. , 2002, Journal of the American Chemical Society.

[146]  J. Schaefer,et al.  Characterization of the complex of a trifluoromethyl-substituted shikimate-based bisubstrate inhibitor and 5-enolpyruvylshikimate-3-phosphate synthase by REDOR NMR. , 2004, Biochemistry.

[147]  R. Griffin,et al.  Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems , 1998 .

[148]  J. Bowie,et al.  Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. , 2002, Journal of molecular biology.

[149]  Ayyalusamy Ramamoorthy,et al.  High-Resolution Heteronuclear Dipolar Solid-State NMR Spectroscopy , 1994 .

[150]  J Wang,et al.  Imaging membrane protein helical wheels. , 2000, Journal of magnetic resonance.

[151]  N. Nielsen,et al.  Exact effective Hamiltonian theory. II. Polynomial expansion of matrix functions and entangled unitary exponential operators. , 2004, The Journal of chemical physics.

[152]  Y. Zur,et al.  Multiphoton NMR spectroscopy on a spin system with I=1/2 , 1983 .

[153]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[154]  H. D. Groot,et al.  A physical interpretation of the Floquet description of magic angle spinning nuclear magnetic resonance spectroscopy , 1998 .