Stress focusing in elastic sheets

We review recent progress in understanding phenomena like crumpling, in which elastic membranes or sheets subject to structureless forces develop sharply curved structure over a small fraction of their surface. In the limit of zero thickness these structures become singular. After reviewing several related phenomena we note the physical elements that give rise to the singular behavior: elasticity and the nearly inextensible behavior of thin sheets. This singular behavior has counterparts in higher dimensions. Then we discuss the most basic of these singularities, the vertex. We describe mathematical progress in describing the d-cone, a simple realization of a vertex. We concentrate on the size of the core that governs the departure from singularity and conclude that fundamental understanding is lacking. We point out further mysterious behavior at the region where a d-cone is supported. We then discuss an emergent singularity that appears when two or more vertices are present: the stretching ridge. We offer several accounts of the scale of this singularity from qualitative scaling arguments to a formal asymptotic analysis. We discuss recent experiments and theories about the interaction of ridges and vertices and review the evidence that these ridges dominate the mechanics of crumpled sheets.

[1]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[2]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[3]  Karl Wolf,et al.  Vorlesungen über technische Mechanik , 1923 .

[4]  Taylor Francis Online,et al.  Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.

[5]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[6]  Theodore Von Kármán Collected works of Theodore von Kármán , 1956 .

[7]  R. Toupin ELASTIC MATERIALS WITH COUPLE STRESSES, ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS , 1962 .

[8]  E. H. Mansfield The Bending and Stretching of Plates , 1963 .

[9]  J. Leech,et al.  Classical Dynamics of Particles and Systems , 1966 .

[10]  P. D. Gennes,et al.  Superconductivity of metals and alloys , 1966 .

[11]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[12]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[13]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[14]  D. Thouless Introduction to Phase Transitions and Critical Phenomena , 1972 .

[15]  C. Lomnitz Geodynamics. , 1973, Science.

[16]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[17]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[18]  J. Thompson,et al.  Elastic Instability Phenomena , 1984 .

[19]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[20]  H. Troger,et al.  A comparison of the postbuckling behavior of plates and shells , 1987 .

[21]  Nelson,et al.  Defects in flexible membranes with crystalline order. , 1988, Physical review. A, General physics.

[22]  A. V. Pogorelov Bendings of surfaces and stability of shells , 1988 .

[23]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[24]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[25]  T. Vicsek Fractal Growth Phenomena , 1989 .

[26]  West,et al.  Positron-annihilation studies of the electronic structure of NiO. , 1989, Physical review. B, Condensed matter.

[27]  L. Peliti,et al.  Thermodynamical behavior of polymerized membranes , 1989 .

[28]  John H. Argyris,et al.  Computer Methods in Applied Mechanics and Engineering , 1990 .

[29]  M Nelkin,et al.  In What Sense Is Turbulence an Unsolved Problem? , 1992, Science.

[30]  Toyoichi Tanaka,et al.  Patterns in shrinking gels , 1992, Nature.

[31]  Beale,et al.  Dielectric breakdown in continuous models of metal-loaded dielectrics. , 1992, Physical review. B, Condensed matter.

[32]  Asymptotic Shape of a Fullerene Ball , 1993 .

[33]  Samuel A. Safran,et al.  Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes , 1994 .

[34]  Tosiyasu L. Kunii,et al.  Bending and creasing virtual paper , 1994, IEEE Computer Graphics and Applications.

[35]  M. Ortiz,et al.  The morphology and folding patterns of buckling-driven thin-film blisters , 1994 .

[36]  D. Morse,et al.  Scaling Properties of Stretching Ridges in a Crumpled Elastic Sheet , 1995, Science.

[37]  Rudolf Podgornik,et al.  Statistical thermodynamics of surfaces, interfaces, and membranes , 1995 .

[38]  Kramer,et al.  Universal power law in the noise from a crumpled elastic sheet. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Boundary layer analysis of the ridge singularity in a thin plate. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Sethna,et al.  Acoustic emission from crumpling paper. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  E. Virga,et al.  Geometrical exact solutions for confocal lamellar textures yielding confinement and faceting phenomena , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  Alan R. Champneys,et al.  Computation of localized post buckling in long axially compressed cylindrical shells , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Stress Condensation in Crushed Elastic Manifolds , 1996, cond-mat/9609037.

[44]  E. Kramer The von Karman equations, the stress function, and elastic ridges in high dimensions , 1996, cond-mat/9608050.

[45]  T. Witten,et al.  Properties of ridges in elastic membranes , 1996, cond-mat/9609068.

[46]  S. Chaieb,et al.  EXPERIMENTAL STUDY OF CREASE FORMATION IN AN AXIALLY COMPRESSED SHEET , 1997 .

[47]  D. Saad Europhysics Letters , 1997 .

[48]  S. Chaieb,et al.  Experimental Study of Developable Cones , 1998 .

[49]  J. Jackson Classical Electrodynamics, 3rd Edition , 1998 .

[50]  L. Mahadevan,et al.  Conical Surfaces and Crescent Singularities in Crumpled Sheets , 1998 .

[51]  Alfonso M. Gañán-Calvo,et al.  Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams , 1998 .

[52]  Elasticity, shape fluctuations, and phase transitions in the new tubule phase of anisotropic tethered membranes , 1997, cond-mat/9708046.

[53]  Brochard-Wyart,et al.  The life and death of "Bare" viscous bubbles , 1998, Science.

[54]  Buckling of thin plates in the weakly and strongly nonlinear regimes , 1998 .

[55]  B. Audoly STABILITY OF STRAIGHT DELAMINATION BLISTERS , 1999 .

[56]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[57]  Crescent singularities and stress focusing in a buckled thin sheet: mechanics of developable cones. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  L. Mahadevan,et al.  Conical dislocations in crumpling , 1999, Nature.

[59]  Limitations on the smooth confinement of an unstretchable manifold , 2000, math-ph/0007003.

[60]  da Silveira R,et al.  Rippling instability of a collapsing bubble , 2000, Science.

[61]  Robert V. Kohn,et al.  Singular Perturbation and the Energy of Folds , 2000, J. Nonlinear Sci..

[62]  Antonio DeSimone,et al.  Rigorous Bounds for the Föppl—von Kármán Theory of Isotropically Compressed Plates , 2000, J. Nonlinear Sci..

[63]  Y. Couder,et al.  Dynamics of singularities in a constrained elastic plate , 2000, Nature.

[64]  M. Bowick,et al.  The statistical mechanics of membranes , 2000, cond-mat/0002038.

[65]  Francisco Melo,et al.  From creases to conical deflections in a buckled thin sheet: stress focusing vs singularities in strong deformations of a thin elastic sheet , 2000 .

[66]  Michael P. Brenner,et al.  Electrospinning: A whipping fluid jet generates submicron polymer fibers , 2001 .

[67]  T. Witten,et al.  Anomalous strength of membranes with elastic ridges. , 2001, Physical review letters.

[68]  Sriram Ramaswamy,et al.  Issues in the statistical mechanics of steady sedimentation , 2001 .

[69]  S. Chaieb,et al.  Singular thin viscous sheet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  A. DeSimone,et al.  Energy Scaling of Compressed Elastic Films –Three-Dimensional Elasticity¶and Reduced Theories , 2002 .

[71]  Edward Ott,et al.  Chaos in Dynamical Systems - 2nd Edition , 2002 .

[72]  Crumpling a thin sheet. , 2001, Physical review letters.

[73]  Ajay Gopinathan,et al.  Trapping of vibrational energy in crumpled sheets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  B. Didonna,et al.  Scaling of the buckling transition of ridges in thin sheets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  A. J. Wood Witten's lectures on crumpling , 2002 .

[76]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[77]  Michael Marder,et al.  Thin films: Wrinkling of an elastic sheet under tension , 2002, Nature.

[78]  I. Cohen,et al.  Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. , 2002, Physical review letters.

[79]  L. Mahadevan,et al.  Thin films: Wrinkling of an elastic sheet under tension , 2002, Nature.

[80]  Donald L. Turcotte,et al.  Geodynamics - 2nd Edition , 2002 .

[81]  Singularities, structures, and scaling in deformed m-dimensional elastic manifolds. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  S. Venkataramani Lower bounds for the energy in a crumpled elastic sheet - A minimal ridge , 2002 .

[83]  M. Gomes,et al.  Stress relaxation in crumpled surfaces , 2002 .

[84]  Thin elastic plates: On the core of developable cones , 2002 .

[85]  T. Boehly,et al.  Experimental investigation of the three-dimensional interaction of a strong shock with a spherical density inhomogeneity. , 2002, Physical review letters.

[86]  L. Mahadevan,et al.  Geometry and physics of wrinkling. , 2003, Physical review letters.

[87]  F. Melo,et al.  Dynamics of developable cones under shear. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  David R. Nelson,et al.  Statistical mechanics of membranes and surfaces , 2004 .

[89]  A. DeSimone,et al.  Self-similar folding patterns and energy scaling in compressed elastic sheets , 2005 .

[90]  J. Eggers Drop formation – an overview , 2005 .

[91]  Crescent singularities in crumpled sheets. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Valerio Pascucci,et al.  Elements of Differential Geometry , 2005 .

[93]  D. Blair,et al.  Geometry of crumpled paper. , 2004, Physical review letters.

[94]  L. Mahadevan,et al.  Confined developable elastic surfaces: cylinders, cones and the Elastica , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[95]  S. Nagel,et al.  Drop splashing on a dry smooth surface. , 2005, Physical review letters.

[96]  Spontaneous curvature cancellation in forced thin sheets. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  V. Rovenski,et al.  Differential Geometry of Curves and Surfaces , 1952, Nature.

[98]  A. Boudaoud,et al.  Statistics of crumpled paper. , 2005, Physical review letters.

[99]  G. Gompper,et al.  Forced crumpling of self-avoiding elastic sheets , 2006, Nature materials.

[100]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[101]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[102]  J William,et al.  IEEE Computer Graphics and Applications , 2019, Computer.