hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks

A high-order generalized finite element method (GFEM) for non-planar three-dimensional crack surfaces is presented. Discontinuous p-hierarchical enrichment functions are applied to strongly graded tetrahedral meshes automatically created around crack fronts. The GFEM is able to model a crack arbitrarily located within a finite element (FE) mesh and thus the proposed method allows fully automated fracture analysis using an existing FE discretization without cracks. We also propose a crack surface representation that is independent of the underlying GFEM discretization and controlled only by the physics of the problem. The representation preserves continuity of the crack surface while being able to represent non-planar, non-smooth, crack surfaces inside of elements of any size. The proposed representation also provides support for the implementation of accurate, robust, and computationally efficient numerical integration of the weak form over elements cut by the crack surface. Numerical simulations using the proposed GFEM show high convergence rates of extracted stress intensity factors along non-planar curved crack fronts and the robustness of the method. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[2]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[3]  E. Oñate,et al.  A hierarchical finite element method based on the partition of unity , 1998 .

[4]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[5]  S. Li,et al.  Symmetric weak-form integral equation method for three-dimensional fracture analysis , 1998 .

[6]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[7]  James C. Newman,et al.  Three dimensional finite-element analysis of finite-thickness fracture specimens , 1977 .

[8]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[9]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[10]  J. Oden,et al.  Solution of Singular Problems Using h-p Clouds , 1996 .

[11]  P. Keast Moderate-degree tetrahedral quadrature formulas , 1986 .

[12]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[13]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[14]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[15]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[16]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[17]  Bodo Heise Analysis of a fully discrete finite element method for a nonlinear magnetic field problem , 1994 .

[18]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[19]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[20]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[21]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[22]  I. Babuska,et al.  The generalized finite element method , 2001 .

[23]  Benoit Prabel,et al.  Level set X‐FEM non‐matching meshes: application to dynamic crack propagation in elastic–plastic media , 2007 .

[24]  M. Duflot A study of the representation of cracks with level sets , 2007 .

[25]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[26]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[27]  Carlos Armando Duarte,et al.  Extraction of stress intensity factors from generalized finite element solutions , 2005 .

[28]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[29]  Carlos Armando Duarte,et al.  A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries , 2006 .

[30]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations , 2002 .

[31]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[32]  A. Huespe,et al.  Continuum approach to the numerical simulation of material failure in concrete , 2004 .

[33]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations IV , 2005 .

[34]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[35]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[36]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[37]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[38]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[39]  B. Moran,et al.  An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions , 2002 .

[40]  Angelo Simone,et al.  Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .

[41]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[42]  Gerhard A. Holzapfel,et al.  Modeling 3D crack propagation in unreinforced concrete using PUFEM , 2005 .

[43]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[44]  Gerhard A. Holzapfel,et al.  3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths , 2006 .

[45]  D. Chopp,et al.  Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method , 2003 .

[46]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[47]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[48]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[49]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[50]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[51]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[52]  P. C. Paris,et al.  The Stress Analysis of Cracks Handbook, Third Edition , 2000 .

[53]  Stefano Mariani,et al.  Extended finite element method for quasi‐brittle fracture , 2003 .

[54]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .

[55]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[56]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[57]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[58]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[59]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[60]  Paul Steinmann,et al.  Towards the algorithmic treatment of 3D strong discontinuities , 2006 .

[61]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[62]  Ivo Babuška,et al.  Computation of the amplitude of stress singular terms for cracks and reentrant corners , 1988 .

[63]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .