Superposition Scheme for -Correlated Partially Coherent Sources

A simple model, based on incoherent superpositions of suitably shifted and tilted lowest order Gaussian beams, is used to describe -correlated partially coherent sources, whose intensity profile is Gaussian. Such a model also provides a generalization of the -correlated source and turns out to be effective in completely characterizing the propagation features of the radiated beam, such as its propagated optical intensity. The closed-form expression for the quality factor is also given, together with a possible experimental setup for the synthesis of such sources.

[1]  Franco Gori,et al.  Sources which generate fields whose spectra are invariant on propagation , 1995 .

[2]  R. Simon,et al.  Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization , 1998 .

[3]  M. Santarsiero,et al.  M(2) factor of Bessel Gauss beams. , 1997, Optics letters.

[4]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum , 1993 .

[5]  Gabriella Cincotti,et al.  Spreading properties of beams radiated by partially coherent Schell-model sources , 1999 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  F. Gori,et al.  Bessel-Gauss beams , 1987 .

[8]  Jari Turunen,et al.  Propagation invariance and self-imaging in variable-coherence optics , 1991 .

[9]  C. Palma,et al.  Partially coherent sources which give rise to highly directional light beams , 1978 .

[10]  C. Sheppard,et al.  Gaussian-beam theory of lenses with annular aperture , 1978 .

[11]  F. Gori,et al.  Collett-Wolf sources and multimode lasers , 1980 .

[12]  A. Schell A technique for the determination of the radiation pattern of a partially coherent aperture , 1967 .

[13]  G. Cincotti,et al.  Beams originated by J0-correlated Schell-model planar sources , 1996 .

[14]  G. Cincotti,et al.  Imaging of J0-correlated Bessel-Gauss beams , 1997 .

[15]  A. B. Katrich,et al.  Laser beam characterization , 2000, Proceedings of LFNM'2000. 2nd International Workshop on Laser and Fiber-Optical Networks Modeling (Cat. No.00EX419).

[16]  E. Wolf New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources , 1982 .

[17]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics , 1993 .

[18]  R. Simon,et al.  Twisted Gaussian Schell-model beams , 1993 .

[19]  M. Santarsiero,et al.  Generalized Bessel-Gauss beams , 1996 .

[20]  Anthony E. Siegman,et al.  New developments in laser resonators , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[21]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[22]  A. Friberg,et al.  Spatially partially coherent Fabry–Perot modes , 1994 .

[23]  A. Friberg,et al.  Interpretation and experimental demonstration of twisted Gaussian Schell-model beams , 1994 .

[24]  Shlomo Ruschin,et al.  Modified Bessel nondiffracting beams , 1994 .

[25]  F. Gori,et al.  A new type of optical fields , 1983 .

[26]  E. Wolf,et al.  Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields , 1982 .

[27]  Dario Ambrosini,et al.  Twisted Gaussian Schell-model Beams: A Superposition Model , 1994 .

[28]  F. Gori,et al.  The change of width for a partially coherent beam on paraxial propagation , 1991 .

[29]  Franco Gori,et al.  Modal expansion for J0-correlated Schell-model sources , 1987 .

[30]  M. Santarsiero Propagation of generalized Bessel-Gauss beams through ABCD optical systems , 1996 .