Functional characterization of the Tetranychus urticae CYP392A11, a cytochrome P450 that hydroxylates the METI acaricides cyenopyrafen and fenpyroximate.

[1]  L. Tirry,et al.  Molecular analysis of cyenopyrafen resistance in the two-spotted spider mite Tetranychus urticae. , 2016, Pest management science.

[2]  F. Hendrickx,et al.  Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host , 2015, Molecular ecology.

[3]  R. Nauen,et al.  Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency. , 2015, Pesticide biochemistry and physiology.

[4]  Ralf Nauen,et al.  IRAC: Mode of action classification and insecticide resistance management. , 2015, Pesticide biochemistry and physiology.

[5]  M. Osakabe,et al.  Cross-resistance between cyenopyrafen and pyridaben in the twospotted spider mite Tetranychus urticae (Acari: Tetranychidae). , 2014, Pest management science.

[6]  M. Riga,et al.  Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. , 2014, Insect biochemistry and molecular biology.

[7]  L. Tirry,et al.  Cross-resistance risk of the novel complex II inhibitors cyenopyrafen and cyflumetofen in resistant strains of the two-spotted spider mite Tetranychus urticae. , 2014, Pest management science.

[8]  R. Nauen,et al.  Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. , 2013, Insect biochemistry and molecular biology.

[9]  Ralf Nauen,et al.  Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. , 2013, Pest management science.

[10]  Richard M. Clark,et al.  A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae , 2012, Proceedings of the National Academy of Sciences.

[11]  M. Monastirioti,et al.  Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster , 2012 .

[12]  T. Van Leeuwen,et al.  Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays , 2012, Experimental and Applied Acarology.

[13]  M. Paine,et al.  Pinpointing P450s Associated with Pyrethroid Metabolism in the Dengue Vector, Aedes aegypti: Developing New Tools to Combat Insecticide Resistance , 2012, PLoS neglected tropical diseases.

[14]  Bin Li,et al.  Synthesis and acaricidal activity of cyenopyrafen and its geometric isomer , 2012 .

[15]  Kunimitsu Nakahira Strategy for discovery of a novel miticide Cyenopyrafen which is one of electron transport chain inhibitors , 2011 .

[16]  L. Tirry,et al.  Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. , 2010, Insect biochemistry and molecular biology.

[17]  R. Nauen,et al.  Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. , 2009, Insect biochemistry and molecular biology.

[18]  R. Nauen,et al.  Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). , 2009, Bulletin of entomological research.

[19]  M. Sutcliffe,et al.  Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2 , 2008, Insect molecular biology.

[20]  R. ffrench-Constant,et al.  Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. , 2007, Insect biochemistry and molecular biology.

[21]  Alex Andrianopoulos,et al.  Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the Drosophila melanogaster Insecticide Resistance Gene Cyp6g1 , 2007, Genetics.

[22]  P. Lümmen Mitochondrial Electron Transport Complexes as Biochemical Target Sites for Insecticides and Acaricids , 2007 .

[23]  Ralf Nauen,et al.  Insecticides design using advanced technologies , 2007 .

[24]  M. Dekeyser Acaricide mode of action. , 2005, Pest management science.

[25]  R. Feyereisen,et al.  4.1 – Insect Cytochrome P450 , 2005 .

[26]  G. Horgan,et al.  Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR , 2002 .

[27]  R. Nauen,et al.  Cross-Resistance, Inheritance, and Biochemistry of Mitochondrial Electron Transport Inhibitor-Acaricide Resistance in Tetranychus urticae (Acari: Tetranychidae) , 2001, Journal of economic entomology.

[28]  M. Uchida,et al.  Species-Specific Detoxification Metabolism of Fenpyroximate, a Potent Acaricide , 2000 .

[29]  R. Hollingworth,et al.  Inhibitors of respiratory complex I. Mechanisms, pesticidal actions and toxicology , 1995 .

[30]  M. Uchida,et al.  Effect of a new acaricide, fenpyroximate, on energy metabolism and mitochondrial morphology in adult female Tetranychus urticae (two-spotted spider mite) , 1992 .

[31]  H. Strobel,et al.  Purification and properties of NADPH-cytochrome P-450 reductase. , 1978, Methods in enzymology.

[32]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[33]  T. Omura,et al.  THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. , 1964, The Journal of biological chemistry.