Multimodal detection of concealed information using Genetic-SVM classifier with strict validation structure

[1]  Wolfgang Ambach,et al.  A Concealed Information Test with multimodal measurement. , 2010, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[2]  Jun Zhang,et al.  Adaptive crossover and mutation in genetic algorithms based on clustering technique , 2005, GECCO '05.

[3]  D. Lykken The GSR in the detection of guilt. , 1959 .

[4]  E Donchin,et al.  The truth will out: interrogative polygraphy ("lie detection") with event-related brain potentials. , 1991, Psychophysiology.

[5]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[6]  Juha Reunanen,et al.  Overfitting in Making Comparisons Between Variable Selection Methods , 2003, J. Mach. Learn. Res..

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Mohamed S. Kamel,et al.  An information theoretic approach to generating fuzzy hypercubes for if-then classifiers , 2011, J. Intell. Fuzzy Syst..

[9]  The impact of prior knowledge from participant instructions in a mock crime P300 Concealed Information Test. , 2014, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[10]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[11]  Engin Avci,et al.  A new intelligent diagnosis system for the heart valve diseases by using genetic-SVM classifier , 2009, Expert Syst. Appl..

[12]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[13]  John Allen Photoplethysmography and its application in clinical physiological measurement , 2007, Physiological measurement.

[14]  G. Ben-Shakhar,et al.  Standardization within individuals: a simple method to neutralize individual differences in skin conductance. , 1985, Psychophysiology.

[15]  Saeed Rahati Quchani,et al.  Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection , 2011, Expert Syst. Appl..

[16]  U. Böckenholt,et al.  Bootstrapping: applications to psychophysiology. , 1989, Psychophysiology.

[17]  Hiroshi Nittono,et al.  Event-related brain potentials during the standard autonomic-based concealed information test. , 2009, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[18]  H. Nittono,et al.  Event-related potentials increase the discrimination performance of the autonomic-based concealed information test. , 2011, Psychophysiology.

[19]  Mohammad Hassan Moradi,et al.  A new approach for EEG feature extraction in P300-based lie detection , 2009, Comput. Methods Programs Biomed..

[20]  E. Meijer Psychophysiology and the detection of deception: promises and perils , 2003 .

[21]  M. T. Bradley,et al.  Accuracy demonstrations, threat, and the detection of deception: cardiovascular, electrodermal, and pupillary measures. , 1981, Psychophysiology.

[22]  Matthias Gamer,et al.  Fixations and eye-blinks allow for detecting concealed crime related memories. , 2013, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[23]  Mohammad Hassan Moradi,et al.  A comparison of methods for ERP assessment in a P300-based GKT. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[24]  Colin Campbell,et al.  Kernel methods: a survey of current techniques , 2002, Neurocomputing.

[25]  Gershon Ben-Shakhar,et al.  The validity of psychophysiological detection of information with the Guilty Knowledge Test: a meta-analytic review. , 2003, The Journal of applied psychology.

[26]  Howard W. Timm,et al.  Analyzing deception from respiration patterns. , 1982 .

[27]  M. Gamer,et al.  Task relevance and recognition of concealed information have different influences on electrodermal activity and event-related brain potentials. , 2010, Psychophysiology.

[28]  M. Dawson,et al.  The electrodermal system , 2007 .

[29]  Manfred Velden,et al.  Depicting cardiac activity over real time: A proposal for standardization. , 1987 .

[30]  Vincent Baeten,et al.  Combination of support vector machines (SVM) and near‐infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds , 2004 .

[31]  Tobias Egner,et al.  Intentional false responding shares neural substrates with response conflict and cognitive control , 2005, NeuroImage.

[32]  Myoungho Lee,et al.  Adaptive threshold method for the peak detection of photoplethysmographic waveform , 2009, Comput. Biol. Medicine.

[33]  Matthias Gamer,et al.  Psychophysiological and vocal measures in the detection of guilty knowledge. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[34]  J P Rosenfeld,et al.  A modified, event-related potential-based guilty knowledge test. , 1988, The International journal of neuroscience.

[35]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[36]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[37]  Wolfgang Ambach,et al.  Separating deceptive and orienting components in a Concealed Information Test. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[38]  Timothy J Ziemlewicz,et al.  Neural correlates of telling lies: a functional magnetic resonance imaging study at 4 Tesla. , 2005, Academic radiology.

[39]  Rouslan A. Moro,et al.  Support Vector Machines (SVM) as a Technique for Solvency Analysis , 2008 .

[40]  Michael R. Winograd,et al.  Review of recent studies and issues regarding the P300-based complex trial protocol for detection of concealed information. , 2013, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[41]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[42]  Gavin C. Cawley,et al.  On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..

[43]  C. Rennie,et al.  Decomposing skin conductance into tonic and phasic components. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[44]  E. D. Farahani,et al.  A Concealed Information Test with Combination of ERP Recording and Autonomic Measurements , 2013, Neurophysiology.

[45]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.