Characterization and classification of Pinus oleoresin samples according to Pinus species, tapping method, and geographical origin based on chemical composition and chemometrics

[1]  J. Bäck,et al.  Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown Scots pine , 2021, Environmental and Experimental Botany.

[2]  L. Leroyer,et al.  Comparison of the performances of handheld and benchtop near infrared spectrometers: Application on the quantification of chemical components in maritime pine (Pinus Pinaster) resin. , 2021, Talanta.

[3]  D. Ariono,et al.  Fractionation of Turpentine , 2020, IOP Conference Series: Materials Science and Engineering.

[4]  J. Bohlmann,et al.  Oleoresin defenses in conifers: chemical diversity, terpene synthases, limitations of oleoresin defense under climate change. , 2019, The New phytologist.

[5]  A. Fett-Neto,et al.  Resin exudation profile, chemical composition, and secretory canal characterization in contrasting yield phenotypes of Pinus elliottii Engelm , 2019, Industrial Crops and Products.

[6]  M. Fatemi,et al.  Multivariate curve resolution-correlation optimized warping applied to the complex GC-MS signals; toward comparative study of peel chemical variability of Citrus aurantium L. varieties , 2018, Microchemical Journal.

[7]  J. Madrigal,et al.  Can prescribed burning improve resin yield in a tapped Pinus pinaster stand? , 2018, Industrial Crops and Products.

[8]  R. Alía,et al.  Resin-tapped pine forests in Spain: Ecological diversity and economic valuation. , 2018, The Science of the total environment.

[9]  H. Mora,et al.  Caracterización de la oleorresina de Pinus caribaeae obtenido por sistema de pica de corteza con ácido sulfúrico , 2016 .

[10]  J. Martín,et al.  Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.) , 2016 .

[11]  A. Fett-Neto,et al.  Stimulant Paste Preparation and Bark Streak Tapping Technique for Pine Oleoresin Extraction. , 2016, Methods in molecular biology.

[12]  M. Génova,et al.  Resin tapping in Pinus pinaster: effects on growth and response function to climate , 2013, European Journal of Forest Research.

[13]  A. Fett-Neto,et al.  Seasonality and chemical elicitation of defense oleoresin production in field-grown slash pine under subtropical climate , 2013 .

[14]  C. Alviano,et al.  Biological Activities of α-Pinene and β-Pinene Enantiomers , 2012, Molecules.

[15]  A. Fett-Neto,et al.  Efficient oleoresin biomass production in pines using low cost metal containing stimulant paste , 2011 .

[16]  Philip Wenig,et al.  OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data , 2010, BMC Bioinformatics.

[17]  Arno Behr,et al.  Myrcene as a natural base chemical in sustainable chemistry: a critical review. , 2009, ChemSusChem.

[18]  A. Farah,et al.  Évaluation de la qualité de la colophane du pin maritime (Pinus pinaster) et du pin d'Alep (Pinus halepensis) du Maroc , 2009 .

[19]  M. Prost,et al.  The essential oil of turpentine and its major volatile fraction (alpha- and beta-pinenes): a review. , 2009, International journal of occupational medicine and environmental health.

[20]  M. J. Gaspar,et al.  Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster , 2008 .

[21]  J. Bohlmann,et al.  Terpenoid biomaterials. , 2008, The Plant journal : for cell and molecular biology.

[22]  B. Glisic,et al.  Antimicrobial activity of the essential oil and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics , 2007 .

[23]  M. Cortijo,et al.  Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition , 2005 .

[24]  A. Farah,et al.  Étude du rendement et de la composition de l'essence de térébenthine du Maroc: cas du Pin maritime (Pinus pinaster) et du Pin d'Alep (Pinus halepensis) , 2005 .

[25]  S. Rezzi,et al.  Composition and chemical variability of the oleoresin of Pinus nigra ssp. laricio from Corsica , 2005 .

[26]  R. Rikala,et al.  Drought Stress Alters the Concentration of Wood Terpenoids in Scots Pine and Norway Spruce Seedlings , 2003, Journal of Chemical Ecology.

[27]  J. Demyttenaere,et al.  Biotransformation of (R)-(+)- and (S)-(−)-limonene to α-terpineol by Penicillium digitatum— investigation of the culture conditions , 2003 .

[28]  J. H. Langenheim,et al.  Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany , 2003 .

[29]  G. Flamini,et al.  Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central Italy , 2003 .

[30]  M. Cortijo,et al.  Pinus pinaster Oleoresin in Plus Trees , 2002 .

[31]  M. Ayres,et al.  Assessing the consequences of global change for forest disturbance from herbivores and pathogens. , 2000, The Science of the total environment.

[32]  C. Pio,et al.  Atmospheric fluxes and concentrations of monoterpenes in resin-tapped pine forests , 1998 .

[33]  I. Valterová,et al.  Contents and Enantiomeric Compositions of Monoterpene Hydrocarbons in Xylem Oleoresins from Four Pinus Species Growing in Cuba. Comparison of Trees Unattacked and Attacked by Dioryctria horneana , 1995 .