Characterization and classification of Pinus oleoresin samples according to Pinus species, tapping method, and geographical origin based on chemical composition and chemometrics
暂无分享,去创建一个
J. Sandak | Anna Sandak | P. Gérardin | B. Charrier | M. Rubini | S. Dumarçay | Armand Clapeau | A. Sandak
[1] J. Bäck,et al. Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown Scots pine , 2021, Environmental and Experimental Botany.
[2] L. Leroyer,et al. Comparison of the performances of handheld and benchtop near infrared spectrometers: Application on the quantification of chemical components in maritime pine (Pinus Pinaster) resin. , 2021, Talanta.
[3] D. Ariono,et al. Fractionation of Turpentine , 2020, IOP Conference Series: Materials Science and Engineering.
[4] J. Bohlmann,et al. Oleoresin defenses in conifers: chemical diversity, terpene synthases, limitations of oleoresin defense under climate change. , 2019, The New phytologist.
[5] A. Fett-Neto,et al. Resin exudation profile, chemical composition, and secretory canal characterization in contrasting yield phenotypes of Pinus elliottii Engelm , 2019, Industrial Crops and Products.
[6] M. Fatemi,et al. Multivariate curve resolution-correlation optimized warping applied to the complex GC-MS signals; toward comparative study of peel chemical variability of Citrus aurantium L. varieties , 2018, Microchemical Journal.
[7] J. Madrigal,et al. Can prescribed burning improve resin yield in a tapped Pinus pinaster stand? , 2018, Industrial Crops and Products.
[8] R. Alía,et al. Resin-tapped pine forests in Spain: Ecological diversity and economic valuation. , 2018, The Science of the total environment.
[9] H. Mora,et al. Caracterización de la oleorresina de Pinus caribaeae obtenido por sistema de pica de corteza con ácido sulfúrico , 2016 .
[10] J. Martín,et al. Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.) , 2016 .
[11] A. Fett-Neto,et al. Stimulant Paste Preparation and Bark Streak Tapping Technique for Pine Oleoresin Extraction. , 2016, Methods in molecular biology.
[12] M. Génova,et al. Resin tapping in Pinus pinaster: effects on growth and response function to climate , 2013, European Journal of Forest Research.
[13] A. Fett-Neto,et al. Seasonality and chemical elicitation of defense oleoresin production in field-grown slash pine under subtropical climate , 2013 .
[14] C. Alviano,et al. Biological Activities of α-Pinene and β-Pinene Enantiomers , 2012, Molecules.
[15] A. Fett-Neto,et al. Efficient oleoresin biomass production in pines using low cost metal containing stimulant paste , 2011 .
[16] Philip Wenig,et al. OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data , 2010, BMC Bioinformatics.
[17] Arno Behr,et al. Myrcene as a natural base chemical in sustainable chemistry: a critical review. , 2009, ChemSusChem.
[18] A. Farah,et al. Évaluation de la qualité de la colophane du pin maritime (Pinus pinaster) et du pin d'Alep (Pinus halepensis) du Maroc , 2009 .
[19] M. Prost,et al. The essential oil of turpentine and its major volatile fraction (alpha- and beta-pinenes): a review. , 2009, International journal of occupational medicine and environmental health.
[20] M. J. Gaspar,et al. Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster , 2008 .
[21] J. Bohlmann,et al. Terpenoid biomaterials. , 2008, The Plant journal : for cell and molecular biology.
[22] B. Glisic,et al. Antimicrobial activity of the essential oil and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics , 2007 .
[23] M. Cortijo,et al. Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition , 2005 .
[24] A. Farah,et al. Étude du rendement et de la composition de l'essence de térébenthine du Maroc: cas du Pin maritime (Pinus pinaster) et du Pin d'Alep (Pinus halepensis) , 2005 .
[25] S. Rezzi,et al. Composition and chemical variability of the oleoresin of Pinus nigra ssp. laricio from Corsica , 2005 .
[26] R. Rikala,et al. Drought Stress Alters the Concentration of Wood Terpenoids in Scots Pine and Norway Spruce Seedlings , 2003, Journal of Chemical Ecology.
[27] J. Demyttenaere,et al. Biotransformation of (R)-(+)- and (S)-(−)-limonene to α-terpineol by Penicillium digitatum— investigation of the culture conditions , 2003 .
[28] J. H. Langenheim,et al. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany , 2003 .
[29] G. Flamini,et al. Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central Italy , 2003 .
[30] M. Cortijo,et al. Pinus pinaster Oleoresin in Plus Trees , 2002 .
[31] M. Ayres,et al. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. , 2000, The Science of the total environment.
[32] C. Pio,et al. Atmospheric fluxes and concentrations of monoterpenes in resin-tapped pine forests , 1998 .
[33] I. Valterová,et al. Contents and Enantiomeric Compositions of Monoterpene Hydrocarbons in Xylem Oleoresins from Four Pinus Species Growing in Cuba. Comparison of Trees Unattacked and Attacked by Dioryctria horneana , 1995 .