A-Posteriori-Steered p-Robust Multigrid with Optimal Step-Sizes and Adaptive Number of Smoothing Steps

We develop a multigrid solver steered by an a posteriori estimator of the algebraic error. We adopt the context of a second-order elliptic diffusion problem discretized by conforming finite elements of arbitrary polynomial degree $p ≥ 1$. Our solver employs zero pre- and one post-smoothing by the overlapping Schwarz (block-Jacobi) method and features an optimal choice of the step-sizes in the smoothing correction on each level by line search. This leads to a simple Pythagorean formula of the algebraic error in the next step in terms of the current error and level-wise and patch-wise error reductions. We show the two following results and their equivalence: the solver contracts the algebraic error independently of the polynomial degree $p$; and the estimator represents a two-sided $p$-robust bound on the algebraic error. The $p$-robustness results are obtained by carefully applying the results of Schoberl et al. [IMA J. Numer. Anal., 28 (2008), pp. 1–24] for one mesh, combined with a multilevel stable decomposition for piecewise affine polynomials of Xu et al. [Multiscale, nonlinear and adaptive approximation, Springer, Berlin, 2009, pp. 599–659]. We consider quasi-uniform or graded bisection simplicial meshes and prove mild dependence on the number of mesh levels for minimal $H^1$-regularity and complete independence for $H^2$-regularity. We also present a simple and effective way for the solver to adaptively choose the number of post-smoothing steps necessary at each individual level, yielding a yet improved error reduction. Numerical tests confirm $p$-robustness and show the benefits of the adaptive number of smoothing steps.

[1]  Paola F. Antonietti,et al.  V-cycle Multigrid Algorithms for Discontinuous Galerkin Methods on Non-nested Polytopic Meshes , 2017, Journal of Scientific Computing.

[2]  L. Grigori,et al.  Adaptive solution of linear systems of equations based on a posteriori error estimators , 2019, Numerical Algorithms.

[3]  W. Mitchell Adaptive refinement for arbitrary finite-element spaces with hierarchical bases , 1991 .

[4]  Jens Markus Melenk,et al.  Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements , 2007 .

[5]  Ian G. Graham,et al.  Unstructured Additive Schwarz-Conjugate Gradient Method for Elliptic Problems with Highly Discontinuous Coefficients , 1999, SIAM J. Sci. Comput..

[6]  P. Vassilevski Hybrid V-cycle algebraic multilevel preconditioners , 1992 .

[7]  T. Chan,et al.  Robust multigrid methods for nonsmooth coefficient elliptic linear systems , 2000 .

[8]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[9]  Martin Vohralík,et al.  A Multilevel Algebraic Error Estimator and the Corresponding Iterative Solver with p-Robust Behavior , 2020, SIAM J. Numer. Anal..

[10]  Wilhelm Heinrichs,et al.  Line relaxation for spectral multigrid methods , 1988 .

[11]  Jinchao Xu,et al.  UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .

[12]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[13]  D. Bartuschat Algebraic Multigrid , 2007 .

[14]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[15]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[16]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[17]  J. Pasciak,et al.  New convergence estimates for multigrid algorithms , 1987 .

[18]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[19]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[20]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[21]  Hari Sundar,et al.  Comparison of multigrid algorithms for high‐order continuous finite element discretizations , 2014, Numer. Linear Algebra Appl..

[22]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[23]  Michael J. Holst,et al.  Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids , 2010, Comput. Vis. Sci..

[24]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[25]  Ullrich Rüde Mathematical and Computational Techniques for Multilevel Adaptive Methods , 1987 .

[26]  Ludmil T. Zikatanov,et al.  Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids , 2012, SIAM J. Numer. Anal..

[27]  Claudio Canuto,et al.  Preconditioned minimal residual methods for Chebyshev spectral calculations , 1985 .

[28]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[29]  Guido Kanschat,et al.  Adaptive Multilevel Methods with Local Smoothing for H1- and Hcurl-Conforming High Order Finite Element Methods , 2011, SIAM J. Sci. Comput..

[30]  Martin Vohralík,et al.  Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation , 2017 .

[31]  Alfio Quarteroni,et al.  Domain decomposition preconditioners for the spectral collocation method , 1988, J. Sci. Comput..

[32]  Ulrich Rüde,et al.  Optimizing the number of multigrid cycles in the full multigrid algorithm , 2010, Numer. Linear Algebra Appl..

[33]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[34]  Ricardo H. Nochetto,et al.  Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids , 2009 .

[35]  Robert Scheichl,et al.  A robust two-level domain decomposition preconditioner for systems of PDEs , 2011 .

[36]  Guido Kanschat,et al.  Multilevel Schwarz preconditioners for singularly perturbed symmetric reaction-diffusion systems , 2018, ETNA - Electronic Transactions on Numerical Analysis.

[37]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[38]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .

[39]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .