Entanglement production by independent quantum channels

For the one-dimensional Hubbard model subject to periodic boundary conditions we construct a unitary transformation between basis states so that open boundary conditions apply for the transformed Hamiltonian. Despite the fact that the one-particle and two-particle interaction matrices link nearest and next-nearest neighbors only, the performance of the density-matrix renormalization-group (DMRG) method for the transformed Hamiltonian does not improve. Some of the new interactions act as independent quantum channels, which generate the same level of entanglement as periodic boundary conditions in the original formulation of the Hubbard model. We provide a detailed analysis of these channels and show that, apart from locality of the interactions, the performance of DMRG is effected significantly by the number and the strength of the quantum channels that entangle the DMRG blocks.

[1]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[2]  I. Peschel Entanglement entropy with interface defects , 2005, cond-mat/0502034.

[3]  Markus Reiher,et al.  Convergence behavior of the density-matrix renormalization group algorithm for optimized orbital orderings. , 2005, The Journal of chemical physics.

[4]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[5]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[6]  V. Roychowdhury,et al.  Entanglement in a valence-bond solid state. , 2004, Physical review letters.

[7]  S. Pittel,et al.  The density matrix renormalization group for finite fermi systems , 2004, cond-mat/0404212.

[8]  O. Legeza,et al.  Quantum data compression, quantum information generation, and the density-matrix renormalization group method , 2004, cond-mat/0401136.

[9]  V. Korepin Universality of entropy scaling in one dimensional gapless models. , 2003, Physical review letters.

[10]  J. Vidal,et al.  Entanglement in a second-order quantum phase transition (4 pages) , 2003, cond-mat/0305573.

[11]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[12]  Garnet Kin-Lic Chan,et al.  Exact solution (within a triple-zeta, double polarization basis set) of the electronic Schrödinger equation for water , 2003 .

[13]  B. A. Hess,et al.  Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach , 2002, cond-mat/0204602.

[14]  B. A. Hess,et al.  QC-DMRG study of the ionic-neutral curve crossing of LiF , 2002, cond-mat/0208187.

[15]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[16]  S. Nishimoto,et al.  Application of the density matrix renormalization group in momentum space , 2001, cond-mat/0110420.

[17]  Guido Fano,et al.  Quantum chemistry using the density matrix renormalization group , 2001 .

[18]  I. Ciofini,et al.  Full‐CI quantum chemistry using the density matrix renormalization group , 1999, cond-mat/9912348.

[19]  S. White,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998, cond-mat/9808118.

[20]  Xiang,et al.  Density-matrix renormalization-group method in momentum space. , 1996, Physical review. B, Condensed matter.

[21]  Vladimir E. Korepin,et al.  The One-Dimensional Hubbard Model , 1994 .

[22]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[23]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[24]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[25]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[26]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.