The accelerating effect of the star-shaped poly(D-lactide)-block-poly(L-lactide) stereoblock copolymer on PLLA melt crystallization

A star-shaped poly(D-lactide)-block-poly(L-lactide) (PDLA-PLLA) stereoblock copolymer was introduced into a poly(L-lactide) (PLLA) matrix. The impacts of the PDLA-PLLA copolymer on PLLA melt crystallization, mechanical properties and rheological properties were investigated. The research results indicated that the PDLA-PLLA copolymer could significantly accelerate the crystallization rate of PLLA. The non-isothermal crystallization results showed that the crystallization temperature shifted to a higher temperature with the increase in the addition of the PDLA-PLLA copolymer. The crystallization temperature increased to about 25 °C with the addition of 10 wt% PDLA-PLLA copolymer. The isothermal crystallization results showed that the half-time of crystallization (t0.5) decreased from 10 min to 2.5 min at 120 °C as the PDLA-PLLA copolymer fraction increased from 0 to 10 wt%. Nucleation efficiency (NE) was used to describe the nucleation efficiency of the PDLA-PLLA copolymer. The highest NE of 65% was obtained for PLLA samples with a PDLA-PLLA copolymer content of 10 wt%. As polarized optical microscopy revealed, this accelerating effect resulted from the good nucleation ability of the PDLA-PLLA copolymer. Moreover, dynamic mechanical analysis results indicated that the addition of the PDLA-PLLA copolymer enhanced the storage modulus of PLLA in the glass state. Rheological properties of nucleated PLLA showed the existence of a network structure of a stereocomplex crystallite (sc-crystallite) above 5 wt% addition of the PDLA-PLLA copolymer.

[1]  C. Dubois,et al.  Effect of chemical and physical branching on rheological behavior of polylactide , 2015 .

[2]  Qian Ding,et al.  Influence of different β-nucleating agent on crystallization behavior, morphology, and melting characteristic of multiwalled carbon nanotube-filled isotactic polypropylene nanocomposites , 2015 .

[3]  P. Mazeran,et al.  Mechanical investigation of confined amorphous phase in semicrystalline polymers: Case of PET and PLA , 2015 .

[4]  Hongyu Liang,et al.  Assessment of miscibility, crystallization behaviors, and toughening mechanism of polylactide/acrylate copolymer blends , 2015 .

[5]  Ling Chen,et al.  Thermal properties and miscibility of semi‐crystalline and amorphous PLA blends , 2014 .

[6]  Chul B. Park,et al.  Poly(lactic acid) stereocomplex formation: Application to PLA rheological property modification , 2014 .

[7]  Yong Gao,et al.  Enhancing cold crystallization of poly(l-lactide) by a montmorillonitic substrate favoring nucleation , 2014 .

[8]  M. Dias,et al.  Isothermal crystallization kinetics of poly(lactic acid)/synthetic mica nanocomposites , 2014 .

[9]  Suming Li,et al.  Stereocomplexed three-arm PPO-PDLA-PLLA copolymers: Synthesis via an end-functionalized initiator , 2014 .

[10]  Changyu Han,et al.  Enhancing the crystallization of poly(L-lactide) using a montmorillonitic substrate favoring nucleation , 2014 .

[11]  Wei Yang,et al.  Stereocomplex Crystallite Network in Asymmetric PLLA/PDLA Blends: Formation, Structure, and Confining Effect on the Crystallization Rate of Homocrystallites , 2014 .

[12]  T. Peijs,et al.  Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment , 2014 .

[13]  P. Dubois,et al.  Polylactide stereocomplex crystallization prompted by multiwall carbon nanotubes , 2013 .

[14]  N. Zhang,et al.  Synergistic effect of poly(ethylene glycol) and graphene oxides on the crystallization behavior of poly(l‐lactide) , 2013 .

[15]  M. Kuo,et al.  Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites , 2013 .

[16]  Yong Yang,et al.  Effect of 1,3,5‐trialkyl‐benzenetricarboxylamide on the crystallization of poly(lactic acid) , 2013 .

[17]  H. Tsuji,et al.  Crystallization behavior and physical properties of linear 2-arm and branched 4-arm poly(l-lactide)s: Effects of branching , 2013 .

[18]  Seung Goo Lee,et al.  Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites , 2013 .

[19]  Chul B. Park,et al.  Poly(lactic acid) crystallization , 2012 .

[20]  S. Ray Polylactide-based bionanocomposites: a promising class of hybrid materials. , 2012 .

[21]  Wanxi Zhang,et al.  Rapid crystallization of poly(l-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent , 2012 .

[22]  Xuesi Chen,et al.  Investigation of poly(lactide) stereocomplexes: 3-armed poly(L-lactide) blended with linear and 3-armed enantiomers. , 2012, The journal of physical chemistry. B.

[23]  H. Tsuji,et al.  Highly Enhanced Nucleating Effect of Melt‐Recrystallized Stereocomplex Crystallites on Poly(L‐lactic acid) Crystallization , 2011 .

[24]  H. Ly,et al.  Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(L-lactic acid) nanocomposites. , 2011, The journal of physical chemistry. B.

[25]  H. Tsuji,et al.  Enhanced Stereocomplex Crystallization of Biodegradable Enantiomeric Poly(lactic acid)s by Repeated Casting , 2011 .

[26]  P. Dubois,et al.  High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. , 2011, Biomacromolecules.

[27]  M. Hillmyer,et al.  Poly(D‐lactide)–Poly(menthide)–Poly(D‐lactide) Triblock Copolymers as Crystal Nucleating Agents for Poly(L‐lactide) , 2009 .

[28]  H. Tsuji,et al.  Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). , 2009, ACS applied materials & interfaces.

[29]  Y. Kimura,et al.  Stereoblock Polylactides as High-Performance Bio-Based Polymers , 2009 .

[30]  H. Tsuji,et al.  Polyglycolide as a Biodegradable Nucleating Agent for Poly(L‐lactide) , 2008 .

[31]  M. Huneault,et al.  Effect of nucleation and plasticization on the crystallization of poly(lactic acid) , 2007 .

[32]  Liang Wu,et al.  Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites , 2007 .

[33]  A. Müller,et al.  DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems , 2007 .

[34]  S. Saha,et al.  Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): Effects of stereocomplex as nucleating agent: [Polymer 47 (2006) 3826-3837] , 2006 .

[35]  H. Takikawa,et al.  Non-Isothermal Crystallization Behavior of Poly(L-lactic acid) in the Presence of Various Additives , 2006 .

[36]  Marc A. Hillmyer,et al.  Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites , 2006 .

[37]  Susan Selke,et al.  An overview of polylactides as packaging materials. , 2004, Macromolecular bioscience.

[38]  X. Sun,et al.  Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites , 2003 .

[39]  H. Yamane,et al.  Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid) , 2003 .

[40]  J. Kotek,et al.  The effect of specific β‐nucleation on morphology and mechanical behavior of isotactic polypropylene , 2002 .

[41]  Marc A. Hillmyer,et al.  Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide , 2001 .

[42]  R. Jerome,et al.  Stereocomplexation and morphology of polylactides , 1995 .

[43]  A. Thierry,et al.  Efficiency scale for polymer nucleating agents , 1994 .

[44]  A. Thierry,et al.  Self‐nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry , 1993 .

[45]  J. Mercier Nucleation in Polymer Crystallization - a Physical Or a Chemical Mechanism , 1990 .

[46]  B. Lotz,et al.  Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agents , 1981 .

[47]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[48]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[49]  Nan Zhang,et al.  Highly improved crystallization behavior of poly(L-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts , 2013 .

[50]  B. Lotz,et al.  Epitaxial crystallization of polymers on organic and polymeric substrates , 1990 .