Dynamical properties of AMAZE and LSD galaxies from gas kinematics and the Tully-Fisher relation at z~3

We present a SINFONI integral-field kinematical study of 33 galaxies at z ∼ 3 from the AMAZE and LSD projects, which are aimed at studying metallicity and dynamics of high-redshift galaxies. The number of galaxies analyzed in this paper constitutes a significant improvement over existing data in the literature, and this is the first time that a dynamical analysis is obtained for a relatively large sample of galaxies at z ∼ 3. Eleven galaxies show ordered rotational motions (∼30% of the sample). In these cases we estimate dynamical masses by modeling the gas kinematics with rotating disks and exponential mass distributions. We find dynamical masses .

[1]  P. G. Jonker,et al.  American Astronomical Society Meeting Abstracts , 2011 .

[2]  F. Mannucci,et al.  Gas accretion as the origin of chemical abundance gradients in distant galaxies , 2010, Nature.

[3]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[4]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[5]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[6]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[7]  Johan Richard,et al.  Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous z ~ 2-3 galaxies , 2009, 0910.4488.

[8]  A. Bunker,et al.  2D kinematics and physical properties of z ∼ 3 star-forming galaxies , 2009, 0909.1386.

[9]  Cambridge,et al.  A Spatially Resolved Map of the Kinematics, Star-Formation and Stellar Mass Assembly in a Star-Forming Galaxy at z=4.9 , 2009, 0909.0111.

[10]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[11]  B. Garilli,et al.  Integral field spectroscopy with SINFONI of VVDS galaxies I. Galaxy dynamics and mass assembly at 1.2 < z < 1.6 , 2009, 0903.1211.

[12]  P. Buschkamp,et al.  THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY–FISHER RELATION , 2009, 0902.4701.

[13]  F. Mannucci,et al.  LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.

[14]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[15]  James E. Larkin,et al.  DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0810.5599.

[16]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[17]  A. Kembhavi,et al.  IMAGES - III. The evolution of the near-infrared Tully-Fisher relation over the last 6 Gyr , 2008, 0803.3002.

[18]  A. Cimatti,et al.  Kinemetry of SINS High-Redshift Star-Forming Galaxies: Distinguishing Rotating Disks from Major Mergers , 2008, 0802.0879.

[19]  Kyle R. Stewart,et al.  Merger Histories of Galaxy Halos and Implications for Disk Survival , 2007, 0711.5027.

[20]  M. Lehnert,et al.  Integral-field spectroscopy of a Lyman-break galaxy at z = 3.2: evidence for merging , 2007, 0711.1491.

[21]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[22]  I. Trujillo,et al.  The properties and evolution of a K-band selected sample of massive galaxies at z∼ 0.4–2 in the Palomar/DEEP2 survey , 2007, 0708.1040.

[23]  J. Brinchmann,et al.  The VIMOS VLT Deep Survey. The assembly history of the stellar mass in galaxies: from the young to t , 2007, 0704.1600.

[24]  A. Fontana,et al.  A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample , 2007 .

[25]  Birmingham,et al.  Resolved Spectroscopy of a Gravitationally Lensed L^{*} Lyman Break Galaxy at z˜5: Evidence for a Starburst-Driven, Galactic-Scale Bi-Polar Outflow , 2007, astro-ph/0701221.

[26]  M. McElwain,et al.  Integral Field Spectroscopy of a Candidate Disk Galaxy at z ~ 1.5 Using Laser Guide Star Adaptive Optics , 2006, astro-ph/0612199.

[27]  B. Weiner,et al.  The Stellar Mass Tully-Fisher Relation to z = 1.2 from AEGIS , 2006, astro-ph/0702643.

[28]  R. Bender,et al.  Intense Star Formation and Feedback at High Redshift: Spatially Resolved Properties of the z = 2.6 Submillimeter Galaxy SMM J14011+0252 , 2006, astro-ph/0611769.

[29]  R. Abuter,et al.  Extreme Gas Kinematics in the z = 2.2 Powerful Radio Galaxy MRC 1138–262: Evidence for Efficient Active Galactic Nucleus Feedback in the Early Universe? , 2006 .

[30]  J. Brinkmann,et al.  The Tully-Fisher Relation and its Residuals for a Broadly Selected Sample of Galaxies , 2006, astro-ph/0608472.

[31]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[32]  F. Mannucci,et al.  Evidence for strong evolution of the cosmic star formation density at high redshifts , 2006, astro-ph/0607143.

[33]  P. P. van der Werf,et al.  Measuring the Average Evolution of Luminous Galaxies at z < 3: The Rest-Frame Optical Luminosity Density, Spectral Energy Distribution, and Stellar Mass Density , 2006, astro-ph/0606536.

[34]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[35]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[36]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[37]  H. Flores,et al.  3D spectroscopy with VLT/GIRAFFE. I. The true Tully Fisher relationship at z ̃ 0.6 , 2006, astro-ph/0603563.

[38]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[39]  H. Rix,et al.  The Space Density and Colors of Massive Galaxies at 2 < z < 3: The Predominance of Distant Red Galaxies , 2006, astro-ph/0601113.

[40]  P. T. de Zeeuw,et al.  Kinemetry: a generalization of photometry to the higher moments of the line-of-sight velocity distribution , 2005, astro-ph/0512200.

[41]  S. Bamford,et al.  The Tully-Fisher relation of intermediate redshift field and cluster galaxies from Subaru spectroscopy , 2005, astro-ph/0511831.

[42]  C. Steidel,et al.  A Census of Optical and Near-Infrared Selected Star-forming and Passively Evolving Galaxies at Redshift z ~ 2 , 2005, astro-ph/0507264.

[43]  R. Ellis,et al.  Evolution of the Near-Infrared Tully-Fisher Relation: Constraints on the Relationship between the Stellar and Total Masses of Disk Galaxies since z ~ 1 , 2005, astro-ph/0503597.

[44]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[45]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[46]  H. Ford,et al.  Is There Really a Black Hole at the Center of NGC 4041? Constraints from Gas Kinematics , 2002, astro-ph/0211650.

[47]  N. Vogt,et al.  The I-Band Tully-Fisher Relation for Sc Galaxies: Optical Imaging Data , 1999 .

[48]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[49]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[50]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[51]  Robert Tibshirani,et al.  An Introduction to the Bootstrap CHAPMAN & HALL/CRC , 1993 .

[52]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[53]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[54]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .