Multiple roles of negative thermal expansion material for high-performance fully-air processed perovskite solar cells

[1]  Zhigang Zang,et al.  Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells , 2022, Nano Energy.

[2]  M. Nazeeruddin,et al.  Dual‐Site Synergistic Passivation for Highly Efficient and Stable Perovskite Solar Cells , 2022, Advanced Energy Materials.

[3]  Zhigang Zang,et al.  Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells , 2022, Nano Research.

[4]  Bryon W. Larson,et al.  Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells , 2021, Science.

[5]  Xingzhong Zhao,et al.  Achieving Efficient and Stable Perovskite Solar Cells in Ambient Air Through Non‐Halide Engineering , 2021, Advanced Energy Materials.

[6]  Zhenghong Lu,et al.  Strain analysis and engineering in halide perovskite photovoltaics , 2021, Nature Materials.

[7]  S. Seok,et al.  Regulating the Surface Passivation and Residual Strain in Pure Tin Perovskite Films , 2021, ACS Energy Letters.

[8]  N. Zheng,et al.  Sulfonate-Assisted Surface Iodide Management for High-Performance Perovskite Solar Cells and Modules. , 2021, Journal of the American Chemical Society.

[9]  V. Jankauskas,et al.  Dopant‐Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules , 2021, Angewandte Chemie.

[10]  Chun‐Sing Lee,et al.  Multifunctional Crosslinking‐Enabled Strain‐Regulating Crystallization for Stable, Efficient α‐FAPbI3‐Based Perovskite Solar Cells , 2021, Advanced materials.

[11]  Yong-Ning Zhou,et al.  Near-zero thermal expansion of ZrW2O8/Al–Si composites with three dimensional interpenetrating network structure , 2021 .

[12]  Jinsong Hu,et al.  Strain in perovskite solar cells: origins, impacts and regulation , 2021, National science review.

[13]  Zongping Shao,et al.  Thermal-expansion offset for high-performance fuel cell cathodes , 2021, Nature.

[14]  Vincent M. Le Corre,et al.  Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements , 2021, ACS energy letters.

[15]  Sai Ma,et al.  Development of encapsulation strategies towards the commercialization of perovskite solar cells , 2021, Energy & Environmental Science.

[16]  D. Tang,et al.  Construction and mechanistic understanding of high-performance all-air-processed perovskite solar cells via mixed-cation engineering , 2021 .

[17]  Huanping Zhou,et al.  An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation , 2020, Energy & Environmental Science.

[18]  D. Tang,et al.  Surfactant Sodium Dodecyl Benzene Sulfonate Improves the Efficiency and Stability of Air‐Processed Perovskite Solar Cells with Negligible Hysteresis , 2020 .

[19]  S. Kinge,et al.  An Efficient Approach to Fabricate Air‐Stable Perovskite Solar Cells via Addition of a Self‐Polymerizing Ionic Liquid , 2020, Advanced materials.

[20]  Xin Li,et al.  Ultraviolet-ozone modification on TiO2 surface to promote both efficiency and stability of low-temperature planar perovskite solar cells , 2020 .

[21]  M. Yuan,et al.  Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape , 2020, Nature Communications.

[22]  Andrew H. Proppe,et al.  Regulating strain in perovskite thin films through charge-transport layers , 2020, Nature Communications.

[23]  Jia Zhu,et al.  A Polymerization‐Assisted Grain Growth Strategy for Efficient and Stable Perovskite Solar Cells , 2020, Advanced materials.

[24]  Wei Huang,et al.  A Nontoxic Bifunctional (Anti)Solvent as Digestive‐Ripening Agent for High‐Performance Perovskite Solar Cells , 2020, Advanced materials.

[25]  Hongwei Zhu,et al.  Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency , 2020, Advanced materials.

[26]  Xin Li,et al.  Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air , 2020 .

[27]  Zhigang Zang,et al.  Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis , 2019, Journal of Materials Chemistry A.

[28]  Pengwan Chen,et al.  Interfacial Residual Stress Relaxation in Perovskite Solar Cells with Improved Stability , 2019, Advanced materials.

[29]  Tingshuai Li,et al.  Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells , 2019, Journal of Materials Chemistry A.

[30]  Yan‐Zhen Zheng,et al.  Efficient all-air processed mixed cation carbon-based perovskite solar cells with ultra-high stability , 2019, Journal of Materials Chemistry A.

[31]  Q. Tang,et al.  Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr3 perovskite solar cells , 2019, Journal of Materials Chemistry A.

[32]  Ruixin Ma,et al.  Interface modification by a multifunctional ammonium salt for high performance and stable planar perovskite solar cells , 2019, Journal of Materials Chemistry A.

[33]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[34]  Abbas Amini,et al.  Liberating Researchers from the Glovebox: A Universal Thermal Radiation Protocol Toward Efficient Fully Air-Processed Perovskite Solar Cells , 2019, Solar RRL.

[35]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[36]  Yiwang Chen,et al.  High‐Performance Perovskite Solar Cells with Excellent Humidity and Thermo‐Stability via Fluorinated Perylenediimide , 2019, Advanced Energy Materials.

[37]  Pengwan Chen,et al.  Strain engineering in perovskite solar cells and its impacts on carrier dynamics , 2019, Nature Communications.

[38]  Fei Huang,et al.  From scalable solution fabrication of perovskite films towards commercialization of solar cells , 2019, Energy & Environmental Science.

[39]  Hyuck-Mo Lee,et al.  Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells , 2019, Nature Communications.

[40]  R. Schropp,et al.  Structurally Reconstructed CsPbI2Br Perovskite for Highly Stable and Square‐Centimeter All‐Inorganic Perovskite Solar Cells , 2018, Advanced Energy Materials.

[41]  Xin Liu,et al.  One-step implementation of plasmon enhancement and solvent annealing effects for air-processed high-efficiency perovskite solar cells , 2018 .

[42]  Yang Yang,et al.  Addressing the stability issue of perovskite solar cells for commercial applications , 2018, Nature Communications.

[43]  Yichuan Ding,et al.  Engineering Stress in Perovskite Solar Cells to Improve Stability , 2018, Advanced Energy Materials.

[44]  Yang Yang,et al.  2D perovskite stabilized phase-pure formamidinium perovskite solar cells , 2018, Nature Communications.

[45]  Pengfei Liu,et al.  Grain‐Boundary “Patches” by In Situ Conversion to Enhance Perovskite Solar Cells Stability , 2018, Advanced materials.

[46]  Yaowen Li,et al.  New Strategy for Two‐Step Sequential Deposition: Incorporation of Hydrophilic Fullerene in Second Precursor for High‐Performance p‐i‐n Planar Perovskite Solar Cells , 2018 .

[47]  S. Cheung,et al.  A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity , 2018 .

[48]  Jinsong Huang,et al.  Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells , 2017, Science Advances.

[49]  S. Zakeeruddin,et al.  Isomer‐Pure Bis‐PCBM‐Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability , 2017, Advanced materials.

[50]  J. Bisquert,et al.  Dynamic Phenomena at Perovskite/Electron-Selective Contact Interface as Interpreted from Photovoltage Decays , 2016 .

[51]  Q. Xue,et al.  Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution , 2016 .

[52]  J. Deng,et al.  Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.

[53]  Juan Bisquert,et al.  Cooperative kinetics of depolarization in CH3NH3PbI3 perovskite solar cells , 2015 .

[54]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[55]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.