Enhancement in the dielectric and ferroelectric behaviour by interface between the electrode and grain bulk boundaries of Ca, Zr-doped Barium Titanate

[1]  R. Rai,et al.  Comparative studies of structural, impedance and magnetic behavior of cobalt ferrite modified barium calcium titanate particulate composites , 2023, Journal of Materials Science: Materials in Electronics.

[2]  R. Rai,et al.  Optical coalition in the electrical and magnetic induction of Dy and Tb-doped BFO-based multiferroic , 2022, Applied Physics A.

[3]  A. Jamale,et al.  Implementing a sol-gel route to adjust the structural and dielectric characteristics of Bi and Fe co-doped BaTiO3 ceramics , 2022, Inorganic Chemistry Communications.

[4]  E. Hlil,et al.  Structural, morphological, optical and dielectric properties of sodium bismuth titanate ceramics , 2022, Inorganic Chemistry Communications.

[5]  N. Thakur,et al.  A Very Low Temperature Growth of BaTiO3 Nanoparticles by Sol‐Hydrothermal Method , 2022, Physica Status Solidi (a).

[6]  P. Uniyal,et al.  Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment , 2022, Polymer Bulletin.

[7]  D. Koelle,et al.  Impedance spectroscopy of ferroelectrics: The domain wall pinning element , 2022, Journal of Applied Physics.

[8]  L. Lebrun,et al.  Deep understanding of structural and physical properties of BaTiO3 over a broad temperature range , 2022, Inorganic Chemistry Communications.

[9]  E. Dhahri,et al.  Crystal structure and dielectric properties of the Ca/Y co-substituted BaTiO3 , 2022, Inorganic Chemistry Communications.

[10]  E. Dhahri,et al.  Investigation of the effect of Sr-substitution on the structural, morphological, dielectric, and energy storage properties of BaTiO3-based perovskite ceramics , 2022, Inorganic Chemistry Communications.

[11]  S. Kumari,et al.  Enhanced Curie temperature and superior temperature stability by site selected doping in BCZT based lead-free ceramics , 2022, Ceramics International.

[12]  Sahil Kumar,et al.  Structural and ferroelectric growth of Ba0.85Mg0.15TiO3–Ga2O3 ceramic through hydrothermal method , 2021, Journal of Materials Science: Materials in Electronics.

[13]  M. Amjoud,et al.  Morphogenesis mechanisms in the hydrothermal growth of lead-free BCZT nanostructured multipods , 2021, CrystEngComm.

[14]  Qiaobao Zhang,et al.  Polymer‐/Ceramic‐based Dielectric Composites for Energy Storage and Conversion , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[15]  A. Sharma,et al.  Structural, dielectric and ferroelectric properties of Cu2+- and Cu2+/Bi3+-doped BCZT lead-free ceramics: a comparative study , 2021, Journal of Materials Science: Materials in Electronics.

[16]  Sahil Kumar,et al.  Fabrication of piezoelectric nanogenerator based on P(VDF-HFP) electrospun nanofiber mat-impregnated lead-free BCZT nanofillers , 2020, Journal of Materials Science: Materials in Electronics.

[17]  M. Amjoud,et al.  Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1−xO3 (x = 0 and 0.02) ceramics , 2020, Journal of Materials Science: Materials in Electronics.

[18]  A. Pandiyan,et al.  The Effect of Space Charge on Blocking Grain Boundary Resistance in an Yttrium-Doped Barium Zirconate Electrolyte for Solid Oxide Fuel Cells , 2020 .

[19]  Y. Shi,et al.  Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with glass additives , 2020 .

[20]  B. Behera,et al.  Effect of Gadolinium on the structural and dielectric properties of BCZT ceramics , 2020 .

[21]  G. Kaur,et al.  Low temperature crystal growth of lead-free complex perovskite nano-structure by using sol-gel hydrothermal process , 2019 .

[22]  Jianning Ding,et al.  Tailoring structure and performance of BCZT ceramics prepared via hydrothermal method , 2019, Physica B: Condensed Matter.

[23]  R. Rai,et al.  Study of phase transitional behavior and electrical properties of relaxor Ba0.85Ca0.15Zr0.05Ti0.95O3 lead free ceramic , 2019, Ferroelectrics Letters Section.

[24]  Q. Shen,et al.  Structural and electrical properties of BCZT ceramics synthesized by sol–gel-hydrothermal process at low temperature , 2019, Journal of Materials Science: Materials in Electronics.

[25]  M. Kharaziha,et al.  (Ba Ca)TiO3 nanopowder: Synthesis and their electrical and biological characteristics , 2019, Materials Chemistry and Physics.

[26]  Atul Kumar,et al.  Investigation of ferroelectric, piezoelectric and mechanically coupled properties of lead-free (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 ceramics , 2019, Advances in Applied Ceramics.

[27]  M. Abdessalem,et al.  Raman scattering, structural, electrical studies and conduction mechanism of Ba0.9Ca0.1Ti0.95Zr0.05O3 ceramic , 2019, Journal of Alloys and Compounds.

[28]  S. Fourcade,et al.  Enhancement of dielectric properties of lead-free BCZT ferroelectric ceramics by grain size engineering , 2018, Superlattices and Microstructures.

[29]  J. P. B. Silva,et al.  Ferroelectric switching dynamics in 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 thin films , 2018, Applied Physics Letters.

[30]  S. S. Islam,et al.  A comparative study of structural and electrical properties in lead-free BCZT ceramics: Influence of the synthesis method , 2018 .

[31]  R. Rai,et al.  Structural and dielectric relaxor properties of Ba1-xMgxTiO3 ceramics prepared through a hydrothermal route , 2018 .

[32]  Nitu Kumar,et al.  Dielectric, Piezoelectric Enhancement and Photoluminescent Behavior in Low Temperature Sintered Pr-Modified Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics , 2018, Journal of Electronic Materials.

[33]  T. Button,et al.  A phase diagram of Ba1‐xCaxTiO3 (x = 0‐0.30) piezoceramics by Raman spectroscopy , 2018 .

[34]  R. Choudhary,et al.  Dielectric and impedance spectroscopy of Bi(Ca 0.5 Ti 0.5 )O 3 ceramic , 2018 .

[35]  R. Devan,et al.  Correlation between structural, magnetic and ferroelectric properties of Fe-doped (Ba-Ca)TiO3 lead-free piezoelectric , 2017 .

[36]  M. Fontana,et al.  Ca doping in BaTiO3 crystal: Effect on the Raman spectra and vibrational modes , 2017 .

[37]  Ziyang Wang,et al.  The investigation of electrical properties and microstructure of ZnO-doped Ba0.9Sr0.1TiO3 ceramics , 2017 .

[38]  Prateek,et al.  Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. , 2016, Chemical reviews.

[39]  T. Karthik,et al.  Structural, ferroelectric and piezoelectric properties of chemically processed, low temperature sintered piezoelectric BZT–BCT ceramics , 2016 .

[40]  X. Chao,et al.  Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics prepared by different methods , 2016, Journal of Materials Science: Materials in Electronics.

[41]  B. Behera,et al.  Structural and impedance spectroscopy study of Samarium modified Barium Zirconium Titanate ceramic prepared by mechanochemical route , 2014 .

[42]  S. Prakash,et al.  Structural, dielectric and optical properties of sol–gel synthesized 0.55Ba(Zr0.2Ti0.8)O3–0.45(Ba0.7Ca0.3)TiO3 ceramic , 2014, Applied Physics A.

[43]  Huabin Yang,et al.  Dielectric, ferroelectric, and piezoelectric properties of Sb2O3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics , 2014, Journal of Materials Science: Materials in Electronics.

[44]  Brian C. Riggs,et al.  Investigations on structure, ferroelectric, piezoelectric and energy storage properties of barium calcium titanate (BCT) ceramics , 2014 .

[45]  C. Moriyoshi,et al.  Origin of Composition Variation of Ferroelectric Phase Transition Temperature in (Ba,Ca)TiO3 by Synchrotron Radiation Powder Diffraction , 2013 .

[46]  Takashi Nakamura,et al.  In-situ Raman spectroscopy of BaTiO3 particles for tetragonal–cubic transformation , 2013 .

[47]  J. Eiras,et al.  Dielectric investigations in nanostructured tetragonal BaTiO3 ceramics , 2013 .

[48]  R. Kotnala,et al.  Impedance spectroscopy and dielectric properties of Ce and La substituted Pb0.7Sr0.3(Fe0.012Ti0.988)O3 nanoparticles , 2011 .

[49]  R. Kumar,et al.  Structural and impedance spectroscopic studies of samarium modified lead zirconate titanate ceramics , 2009 .

[50]  A. Shukla,et al.  Effect of Mn4+ substitution on thermal, structural, dielectric and impedance properties of lead titanate , 2009 .

[51]  Zuyong Feng,et al.  Striking similarity of ferroelectric aging effect in tetragonal, orthorhombic and rhombohedral crystal structures , 2008 .

[52]  H. Chan,et al.  Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics , 2004 .

[53]  R. Choudhary,et al.  Effect of Zr+4 ion substitution on the structural, dielectric and electrical properties of Sr5LaTi3Nb7O30 ceramics , 2004 .

[54]  Y. Yuzyuk,et al.  Phase transitions in (Ba0.7Sr0.3)TiO3/(001)MgO thin film studied by Raman scattering , 2003 .

[55]  S. V. Suryanarayana,et al.  Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18 , 2003 .

[56]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[57]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[58]  A. Saha,et al.  Influence of Ga2O3 on structural and morphological properties of lead-free BCT at low temperature , 2022, AIP Conference Proceedings.

[59]  K. Sasaki,et al.  Modifying Grain Boundary Ionic/Electronic Transport in Nano-Sr- and Mg- Doped LaGaO3-δ by Sintering Variations , 2019, Journal of The Electrochemical Society.

[60]  R. Guo,et al.  Dielectric properties of Ba(Ti1 − xZrx)O3 solid solutions , 2007 .